
V

SEPTEMBER 1998

G A M E D E V E L O P E R M A G A Z I N E

S ome years back, certain
forces decided that a mar-
riage of Hollywood and
Silicon Valley should be

arranged. Much was written about this
nuptial, and many prognosticated that
this joining would forever change both
industries. This vision of the future
never materialized, and many game
developers have been happy to distance
themselves from their movie-making
brethren, but lately I’ve been thinking
that one aspect of the film industry does
deserve a closer look by game develop-
ers — the concept of the indie film festi-
val. The Sundance Film Festival is an
event we could do well to imitate.

The Sundance Festival came out of
nowhere in 1978 (at the time it was
called the “U.S. Film Festival”) as the
country’s first film festival. The original
idea for the festival was simple enough:
to bring filmmakers, authors, and actors
to Utah to screen classic indies and talk
about current social themes in films.
(“Indies” are films made outside of the
massive, often formulaic Hollywood sys-
tem, and are typically characterized by
their miniscule budgets.) The late
Arthur Knight, then a professor of film
at USC, suggested turning the festival
into a national competition to foster the
emerging market of American-made
independent films. As the festival grew,
the premieres began to dominate the
program, and showings of older films
were scaled back.

Today the Sundance Festival is one of
the film industry’s biggest events, and
its highlight is the American Indepen-
dent Dramatic and Documentary
Competition, where new American
indies are premiered. It’s hard to over-
state the exposure that this competition
gives to these films. Most of these indies
wouldn’t be seen by distributors and
studios otherwise. As a result, many
indie filmmakers look to Sundance as
their opportunity to present their films
before an influential audience.
Distributors see what’s available and
often sign on indies for wide distribu-
tion. Film industry execs go to the festi-
val to unearth undiscovered talent and
see what themes cutting-edge films are
exploring. Audiences come in droves to
preview the movies and, hopefully, rub
elbows with the movie-making crowd.

The Sundance idea has since been repli-
cated all over the world, and chances
are that there’s a city near you that has
its own film festival now, but it’s the
Sundance festival that most filmmakers
pine for.

Is it just me, or is the game develop-
ment community missing out on a
golden opportunity here? I think the
time is ripe to create an event like this
to highlight outstanding new games,
particularly those by smaller game
development companies. Right now,
the big launch (preview, really) event
for game developers is E3. While E3 def-
initely serves its purpose in hooking up
established publishers with the likes of
Wal-Mart purchasing agents, it doesn’t
cut it for the less-established developer
looking to sign a game to a publisher —
or even just break into the market.
Between the 30,000 people streaming
though the cavernous tradeshow floor,
the pulsating beat of high-decibel
techno-rock, and the cost of exhibiting
at this tradeshow, the little guy doesn’t
stand much of a chance to get noticed.

What the game development industry
needs is another, more relaxed venue
where “indie” games can be “screened”
in a comfortable setting, and where the
gaming public (and other aspiring
developers) can see what kinds of titles
are being developed on a shoestring.
Like Sundance, there ought to be eligi-
bility requirements, a jury to select and
judge entries, and awards for the win-
ners. While you might scoff at the idea
of a festival of indie games, I know some
damn talented developers who could
use this kind of event to show off their
projects and skills. If those who dis-
missed the idea of an indie film festival
were taken seriously a few decades ago,
great indie films like Hoop Dreams; sex,
lies, and videotape; Crumb; Clerks; The
Brothers McMullen; Paris is Burning; and
other excellent Sundance premieres
might never have caught on (or even
have been made).

If the Sundance idea intrigues you
too, let me know — I’d like to hear from
you. Send your thoughts and ideas to
me at adunne@sirius.com. We’ll see
where this takes us. ■

G A M E D E V E L O P E R S E P T M E B E R 1 9 9 8

2

P L A NG A M E

Where’s Our Sundance? EDITOR IN CHIEF

MANAGING EDITOR

DEPARTMENTS EDITOR

ART DIRECTOR

EDITOR-AT-LARGE

CONTRIBUTING EDITORS

ADVISORY BOARD

COVER IMAGE

PUBLISHER

WESTERN REGIONAL SALES
MANAGER

EASTERN REGIONAL SALES
MANAGER

SALES ASSOCIATE

MARKETING MANAGER

AD. PRODUCTION COORDINATOR

DIRECTOR OF PRODUCTION

VICE PRESIDENT/CIRCULATION

ASST. CIRCULATION DIRECTOR

CIRCULATION MANAGER

CIRCULATION ASSISTANT

NEWSSTAND ANALYST

REPRINTS

CEO-MILLER FREEMAN GLOBAL

CHAIRMAN-MILLER FREEMAN INC.

PRESIDENT/COO

SENIOR VICE PRESIDENT/CFO

SENIOR VICE PRESIDENTS

VICE PRESIDENT/PRODUCTION

VICE PRESIDENT/CIRCULATION

VICE PRESIDENT/
GROUP DIRECTOR

SENIOR VICE PRESIDENT/
SYSTEMS AND SOFTWARE

DIVISION

Alex Dunne
adunne@sirius.com

Tor D. Berg
tdberg@sirius.com

Wesley Hall
whall@mfi.com

Laura Pool
lpool@mfi.com

Chris Hecker
checker@d6.com

Jeff Lander
jeffl@darwin3d.com

Josh White
josh@vectorg.com

Omid Rahmat
omid@compuserve.com

Hal Barwood

Noah Falstein

Brian Hook

Susan Lee-Merrow

Mark Miller

dub Media Inc.

Cynthia A. Blair
cblair@mfi.com

Alicia Langer
(415) 905-2156
alanger@mfi.com

Kim Love
(415) 905-2175
klove@mfi.com

Ayrien Houchin
(415) 905-2788
ahouchin@mfi.com

Susan McDonald

Dave Perrotti

Andrew A. Mickus

Jerry M. Okabe

Mike Poplardo

Stephanie Blake

Kausha Jackson-Craine

Joyce Gorsuch

Stella Valdez
(916) 983-6971

Tony Tillin

Marshall W. Freeman

Donald A. Pazour

Warren “Andy” Ambrose

H. Ted Bahr

Darrell Denny

David Nussbaum

Galen A. Poss

Wini D. Ragus

Regina Starr Ridley

Andrew A. Mickus

Jerry M. Okabe

KoAnn Vikören

Regina Starr Ridley

Miller Freeman
A United News & Media publication

www.gdmag.com

In Defense of Curriculum Designers

I was outraged by Seymour Papert's
irresponsible, self-serving Soapbox in

the June 1998 issue of Game Developer.
As an instructional designer, I believe he
paints a very misleading picture of what
motivates us. I'm offended by his accusa-
tion that it’s in a curriculum designer’s
best interest for a student not to learn
(so that a new curriculum is needed and
brings more business). The instructional
designers I've known are dedicated to
educating others. Teaching is not a
lucrative profession. Clearly, financial
gain isn’t our primary motivator.

Papert seals his hypocrisy by using his
article simply to promote his latest
book. This cripples his argument and
makes his column a self-serving adver-
tisement that panders to a target audi-
ence of programmers and others in the
game industry who might read it and
think "I've always said we didn't need
instructional designers!"

As an instructional editor and project
manager of computer-based training
programs at Total Learning Concepts, I
made sure that our customers learned
key concepts. Any perpetuation of busi-
ness came not from doing a poor job,
but rather from always doing the best
job that I could. If our clients didn't
learn from our material, they certainly
wouldn't come back to us for help in the
future.

Another serious flaw in Papert's argu-
ment is his comparison of learning how
to play a videogame with learning math
or reading. A "Professor of Learning"
must be aware that the brain does not
process all information in exactly the
same way. How can Papert justify
clumping all these different types of
information processing into one catego-
ry? I suggest he, or anyone interested in
how people learn different skills, read
any work by the foremost expert in the
field of learning, Howard Gardner.
Professor Gardner’s pioneering theories
have led to the identification of eight
different types of learning. I'd like to
know exactly which games Papert thinks
teach players how to learn, and what
specific learning skills he thinks they are
developing by playing these games.

Papert's column might lead a reader
to assume that all types of learning can
be grouped into one category, or that a
designer who is great at teaching one set

of skills may be an expert in every field.
It's true that teaching a person how to
learn is considered the ultimate goal of
academia, but when it comes to educat-
ing students in specific subject matter,
the medium cannot afford to become
the message.

A panel discussion at this year's E3 on
educational software presented another
important reason for a curriculum
designer to lend input on an education-
al product: promoting the product in
the classroom market. In order for a
school system to adopt educational soft-
ware, the software must comply with
the school's curriculum. Great instruc-
tional designers are not only familiar
with a

given
school sys-
tem's curriculum; they also
have experience implementing
the curriculum in the classroom.

I have the utmost respect everyone
involved with project development, and
recognize the important contributions
of each member of the team. I've
learned much about game design from
incredibly talented, insightful program-
mers. I hope game developers recognize
the advantages and benefits that a good
instructional designer can bring to an
educational product. Instead of simply
replacing instructional designers with
programmers, I recommend that the
two work closely together to create bet-
ter educational games.

Z a r e h M a c P h e r s o n A r t i n i a n

v i a e - m a i l

P A P E R T R E S P O N D S : I’ll refrain from

devoting more than one sentence to

Artinian's personal flames. What Artinian

sees as venal book-selling commercialism,

someone more familiar with academic prac-

tices would see as standard scholarly

responsibility. But the issues at stake are

deeper than a ping-pong debate between

Artinian and Papert. Our conflict of opinion

is an incident in a worldwide confrontation

between two opposed perspectives on

learning.

I am not cowed by the fact that eminent

members of the education establishment

would support Artinian's position. Of course

they would. The battle is about a challenge

from new technologies and from new theo-

ries of learning that threaten to overthrow

the accepted structure of school, the idea of

curriculum, the segregation of children by

age, and pretty well everything that the edu-

cation establishment will defend to the bitter

end.

Artinian throws out a challenge that high-

lights one key position in this battle: "I'd like

to know exactly which games Papert thinks

teach players how to learn, and what specific

learning skills he thinks they are developing

by playing these games." The most impor-

tant learning skills that I see children getting

from games are those that support the

empowering sense of taking charge of their

own learning. And the learner taking charge

of learning is antithetical to the dominant

ideology of curriculum design. By definition,

curriculum design means assigning to

experts the job of deciding the best way for

each individual to

learn each sub-

ject. The power of

the idea of taking

responsibility for

one's own learn-

ing applies to all

learning. It is sheer

mystification to sug-

gest that no princi-

ples can be shared by

all forms of learning. Saying

that the learner is in charge does not mean

that everyone has to re-invent every wheel.

Good learners will recognize the limits of

their inventiveness and seek help. In the

past, the opportunities for school-aged peo-

ple to do this effectively were extremely

limited. They still are today. But the presence

of digital technologies is rapidly moving us

into a period where learners can learn what

they need to know on their own agenda

rather than on the predetermined agenda of

a curriculum. We will soon be able to give up

the assembly line model of grade after

grade, exercise after exercise.

It would be naive to believe this could hap-

pen without resistance from the education

establishment — which includes several

multibillion dollar sectors of the education

industry as well as huge bureaucracies with a

vested interest in maintaining the status

quo. I grant that most people who make and

apply curriculums are underpaid and moti-

vated by the welfare of children. But this

does not alter the fact that present-day

schools, to which (as Artinian actually

boasts) they have to cater in order to sell

their products, are relics from an earlier

period of knowledge technology.

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 8 G A M E D E V E L O P E R

5

S A Y S Y O U

Got some issues? E-mail us at
gdmag@mfi.com. Or write to Game
Developer, 600 Harrison Street, San

Francisco, CA 94107.

M

Character Studio R2
KINETIX is now shipping the latest
incarnation of Character Studio soft-
ware, its the character animation plug-
in software extension to 3D Studio MAX
R2 and R2.5.

Character Studio R2 combines
motion capture, editing, and blending
technology with traditional keyframe
animation, new skin deformation tools,
and Character Studio’s footstep-driven
technique. Character Studio R2 ships
with a library of more than 500 ready-
to-use motion capture samples repre-
senting a variety of sequences, such as
punching, kicking, jumping, and run-
ning. Custom motion capture and hand
animations can be integrated with the

packaged sequences. The tool is com-
prised of Biped, a hybrid footstep-driven
motion capture/keyframe animation
system, and Physique, an interactive
skinning system.

Character Studio R2 software is avail-
able worldwide as a plug-in application
for 3D Studio MAX R2 and R2.5, and is
U.S. list priced at $1,495. Upgrades from
Characters Studio R1 are priced at $495.
■ Kinetix

San Francisco, Calif.

(800) 879-4233 / (415) 547-2000

http://www.ktx.com

trueSpace 4
CALIGARI unveiled trueSpace4 — the

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

6

BIT BBBB LLLL
N E W S F R O M T H E W O R L D

W E ’ L L M I S S Y O U . Game designer Dani
Bunten Berry, who developed such classics
as SEVEN CITIES OF GOLD, M.U.L.E., ROBOT

RASCALS, COMMAND H.Q., and MODEM WARS,
passed away on July 3rd, following a battle
with lung cancer. Dani was a pioneer in the
industry, and a truly remarkable person that
many will miss. She was 49.
A N O T H E R T L C S P R E E . The Learning
Company is purchasing Brøderbund
Software in a stock swap valued at $420
million. TLC has been on an intense shop-
ping spree this year, netting Mindscape in
March and PF. Magic in May. Following
this acquisition, The Learning Company will
control about 40 percent of the educational
software market, according to analysts.
B R I N G B A C K S P R O C K E T S ? In his
keynote address at MacWorld in New York,
interim CEO Steve Jobs explained the
importance of the consumer market to
Apple and singled out game development
as a priority. Jobs took a swipe at his pre-
decessors, jokingly commenting that, “For
some reason, Apple’s previous manage-
ment didn’t like games. We do now,
though.” A video segment showed that
there are indeed some A-titles coming for
the MacOS, including Eidos’ TOMB RAIDER

series, two MicroProse Star Trek titles, GT
Interactive’s UNREAL, Microsoft’s AGE OF

EMPIRES and CLOSE COMBAT, and an undis-
closed LucasArts’ Star Wars game.
A C C L A I M R E P O R T E D E X C E L L E N T

R E S U L T S for its third fiscal quarter (end-
ing May 31). The company’s $73.2 million in
revenue represents a 76 percent increase
over the same period last year. Profits came
in at $5.7 million, compared with a net loss
of $69.7 million for the same period last
year. Acclaim cited Nintendo’s price reduc-
tion on N64 cartridges to third-party
licensees, as well as strong demand for its
Acclaim Sports branded titles such as ALL-
STAR BASEBALL 99 and JEREMY MCGRATH

I N D U S T R Y
W A T C H
I N D U S T R Y
W A T C H

b y A l e x D u n n e

Sim Solutions
NDIMENSION recently released
SimStudio, a development solution for
simulations that enables you to automate
time-consuming, complex tasks and easi-
ly add real-world physics, accurate
dynamics, true collision detection, and
behavior modeling to your game world.

SimStudio uses object-oriented tools
and is best suited to applications that
require real-time dynamics and a very
high degree of interactivity — such as
vehicular, defense, architecture, marine,

and flight sims, among others. The suite contains three core products: the IDE, a
C++ API, and the real-time simulation executive (RTSX). It features dynamics and
AI editing, predictive collision detection, the ability to create custom plug-in artifi-
cial intelligence and dynamics modules, intelligent line-of-sight and height above
terrain, and the creation of unlimited scenario databases. SimStudio also imports
3D Studio and MultiGen models.

SimStudio runs on Windows 95 or Windows NT 4.0 with an Intel Pentium-class
CPU of 166MHz or better. You’ll also need a 3D accelerator/IG with Windows sup-
port. SimStudio supports any OpenGL or Direct3D capable hardware, including
the 3Dfx Voodoo and Voodoo2 based hardware. The suite sells for $3,995. Plug-in
modules and device extensions are also available.
■ Ndimension Simulations Pty. Ltd.

Santa Clara, Calif.

(408) 986-0900

http://www.ndimension.com

Two MIG 29s flying down Yosemite

canyon, taken from a run-time .EXE.

new version of its authoring tool for
interactive Web, graphic, and game
design — at SIGGRAPH in July.

The latest version of trueSpace intro-
duces three major new features: a pho-
torealistic renderer with hybrid radiosi-
ty, a true 3D user interface, and
game-quality hardware acceleration.
“Hybrid” radiosity means that you can
combine traditional phong shading
with ray tracing and radiosity both in
the same image. The new renderer also
supports features such as atmospheric
rendering, volumetric shadows,
reflectance shaders (including true
transparency and anisotropic reflectors),
and lens flares, among others. Caligari
has altered their 3D user interface by
replacing traditional control elements
such as dialogue boxes, buttons, and
sliders with 3D widgets — thus moving
even the controls into the 3D environ-
ment, which means the interface is fully
accelerated by hardware. This allows
you to perform all editing operations in
real time. Other new features include
NURBS surfaces, bones (the ability to
create and manipulate the skeleton of a
3D character), polygonal editing and
per-face texturing, and function curves.

Caligari’s trueSpace 4 runs smoothly
on current generation 3D chips, and is
optimized for next generation chips
such as Permedia3 or the RIVA TNT.
trueSpace4 has a street price of $595.
■ Caligari Corp.

Mountain View, Calif.

(800) 351-7620 / (415) 390-9600

http://www.caligari.com

SurfaceSuite Stand-alone
SVEN TECHNOLOGIES has just
released a stand-alone version of
SurfaceSuite Pro, an adaptive texture
mapping application for 3D artists, ani-
mators, and designers.

Adaptive texture mapping is a tech-
nique developed by Sven Technologies
to facilitate efficient, photorealistic tex-
ture mapping by treating texture maps

as sheets of rubber that can be placed,
warped, and blended on a 3D model in
real time. The tool’s control-point-
based mapping system allows you to
take photographic source images (pic-
tures from a digital camera, scanned
photos, and so on) and map them onto
complex 3D models. You can apply
control points onto a 3D model and
then apply corresponding points to a
2D texture. The stand-alone version of
SurfaceSuite Pro offers all the adaptive
texture mapping, blending, and com-
positing capabilities of the earlier plug-
in version and contains several new fea-
tures. New features include: wide
compatibility with most 3D modeling
applications, real-time texture blend-
ing, NURBS and patch texturing, an
enhanced graphical user interface, and
the “Relaxer” object-dependent texture
mapping. The Relaxer allows you to
generate a texture-coordinate mapping
that is optimized for even surface distri-
bution of textures over an object — this
eliminates texture pinching, streaking,
and stretching.

As a plug-in, SurfaceSuite Pro is com-
patible with 3D Studio MAX, and sells
for $495. As a stand-alone, SurfaceSuite
Pro is available for $595, and is compati-
ble with a variety of 3D modeling tools.
■ Sven Technologies Inc.

Palo Alto, Calif.

(650) 852-9242

http://www.sven-tech.com

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 8 G A M E D E V E L O P E R

7

AAAA SSSS TTTT SSSS
O F G A M E D E V E L O P M E N T

SUPERCROSS 98, as major factors. Gross rev-
enues by platform for the quarter consisted
of 50 percent for N64, 30 percent for
PlayStation, 18 percent for PC, and the bal-
ance in portables and all other. North
American operations generated 58 percent
of net revenues and international opera-
tions 42 percent for the quarter.
K E S M A I S I G N S O N H E N D R I C K .

Kesmai Studios recently nabbed veteran
game designer Arnold Hendrick from
Interactive Magic. Hendrick will take the
position of senior producer for Kesmai’s
next generation of Air Warrior combat flight
sims. While at IM, Hendrick was the senior
designer for PANZER ‘44 and IM1A2 ABRAMS

military sims. His game design career
spans over 25 years, and includes classics
such as DONKEY KONG JR. for the Atari 2600
and MicroProse’s GUNSHIP.
A C T I V I S I O N A C Q U I R E D H E A D

G A M E S P U B L I S H I N G , a developer of
“outdoor sports and lifestyle” games. Head
Games was the company behind the recent
hit BIG GAME HUNTER. Activision explained
that the purchase follows its strategy to
expand its product offerings into new genres
at affordable price points (BGH lists for $20),
and target a broader consumer audience.
Other Head Game titles under development
or recently released include ZEBCO PRO

FISHING 3D, AMF PROBOWL 3D, DUCKHUNTER

PRO, CROSMAN EXTREME PAINTBRAWL,
BRUNSWICK PROPOOL 3D, and MASTERCRAFT

EXTREME WATERSPORTS. Amazing.
D I A M O N D M U L T I M E D I A announced
worse than expected results for its second
quarter (ending June 30), caused largely by
flat sales of its Voodoo2-based Monster 3D II
card. William Schroeder, Diamond’s presi-
dent and CEO, stated that “…sales of our
Monster 3D II product, while quite strong,
fell short of our expectations toward the end
of the quarter by approximately $20 million.
Since Monster II was one of our best margin
products in the quarter, this had a significant
impact on our total margins for the quarter.”
Diamond posted a loss of $8.3 million for the
quarter. Diamond was one of the first com-
panies with a Voodoo2 card, so this may not
be good news to second- and third-tier card
manufacturers using the Voodoo2.

Using SurfaceSuite Pro’s control-

point-based mapping system to map

a photo onto a 3D model.

b y J e f f L a n d e r G R A P H I C C O N T E N T

Well, look at it piece by piece. There
are two methods for studying motion:
kinematics and kinetics. Kinematics is
the science of motion without regard
to the forces that cause it. If I were
interested in how forces and torques
act upon an object to create motion, I
would be looking into the kinetics
side of dynamics. But I don’t want to
open that can of worms. So for now,
let’s just stick to kinematics.

Kinematics is really about the geom-
etry of motion. If you read my
columns in March through May 1998,
you know that when animating a
character, it’s often convenient to
build a skeletal hierarchy that repre-
sents the different parts of the charac-
ter. When animating this character, I
keep track of the position and orienta-
tion of each of these parts. For exam-
ple, to move a character’s hand into a
desired position, I may rotate the
upper arm, then the lower arm, and
finally lower the hand, until I am
happy (see Kine in Figure 1). This
form of animation is known as for-
ward, or direct, kinematics (it’s for-
ward because you manipulate each
joint forward throughout the hierar-
chy).

But, what if I wanted just to posi-
tion the hand and let the software cal-
culate a set of joint orientations for
the other bones to generate the final
position? That’s the goal of inverse
kinematics. Given a desired position
and orientation for a final link in a
chain, establish the transformations
required for the rest of the chain.

You can see how this is a big plus
for animators. By simply dragging
around the hands and feet, they can
position the entire character. That’s
why any 3D graphics software that’s
interested in competing in the anima-

tion market must have IK. But, how
does this apply to real-time games?

Inverse Kinematics and Gaming

I nteractivity is very important in 3D
games. Players want the ability to

truly interact with their environments.
However, this level of interaction is
difficult to create. If some of the goals
in the game include picking up objects
or manipulating switches and levers,
then the character needs the ability to
visually interact with these objects. To
make the problem easier, many game
titles create one canned animation for
each action. Then, when the character
encounters an object that it needs to
pick up, there are two ways to handle
the action: either the player must line
up the character manually to perform
the interaction, or the game must
align the character with the object
automatically. The former technique
can lead to frustration on the players’
parts as they try to align the character
manually. The latter can lead to visual
problems if the character is allowed to
correct too far. Anyone who has
played games such as TOMB RAIDER is
very familiar with the issues involved.

Now, these methods are perfectly
reasonable cheats that game designers
use to avoid difficult problems from
either a programming or production
perspective. However, if you have the
desire and computational bandwidth
to spare, it would be good to solve this
problem. By implementing an IK sys-
tem in a real-time game, you can
enable the character to reach out inter-

actively for any object within its reach.
Inverse kinematics allows you to cre-

ate complex characters that face the
player. How about a serpent that
whips its head around to confront the
character, no matter from what direc-
tion the character approaches? Inverse
kinematics opens up many similar pos-
sibilities to game designers. So, now
that you’re all convinced that you
need inverse kinematics in your game,
how do you go about doing it?

Taking Animation to the Sixth Degree

I need to take a minute to discuss
degrees of freedom. You see state-

ments such as, “A complete six-degree-
of-freedom engine,” in ad copy all the

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 8 G A M E D E V E L O P E R

9

Oh My God, I Inverted Kine!

W e have all heard about inverse kinematics. It has become a buzz-

word in computer graphics. High-end 3D animation packages

brag about how effectively they handle IK. So IK clearly has

something to do with animation, right?

Jeff can be freely manipulated about an arbitrary axis at Darwin 3D, for a fee of
course. To impose your own restrictions on him, e-mail jeffl@darwin3d.com.

F I G U R E 1 . Kine application in

action.

time. But what does that really mean?
In my March 1998 column, “Better 3D:
The Writing Is on the Wall,” I dis-
cussed degrees of freedom and how
they were affected by rotations. To
recap loosely, an articulated figure is
connected by a series of joints. Each
joint forms the number of degrees of
freedom in the next object of the hier-
archy. Figure 2A depicts a simple slid-
ing joint like you may see in a shock
absorber. This joint, called a prismatic
joint, exhibits one degree of transla-
tional freedom. Moving the joint only
moves the end position in one dimen-
sion. Figure 2B depicts a basic rotation-
al, or revolute joint. It allows rotation
around one axis defining one degree of

rotational freedom.
In actuality, most joints in a charac-

ter have more then one degree of free-
dom. For example, a wrist joint usually
allows rotation to some extent in the
x, y, and z axes. This represents three
full degrees of freedom for the wrist
alone. However, when a game engine
is described as having six degrees of
freedom, this refers to the player’s
point of view. The player is able to
move the camera in all three direc-
tions and has rotational freedom about
all three axes.

When you’re trying to solve the

inverse kinematics of a system, you are
solving a system of nonlinear equa-
tions. Each added degree of freedom
makes the problem more complex.
This means that each way you can
limit the system will make the calcula-
tions easier later.

So, How Do You Do It?

I n general, there are two forms of
solutions for an inverse kinematic

system: closed form solutions and
numerical solutions. Closed form solu-
tions are found analytically by using
noniterative calculations. John Craig
has shown that all systems with only

revolute and prismatic joints having a
total of six DOF in a single series chain
are solvable closed form systems (see
For further info). To solve a closed
form system, one can take algebraic
and geometric approaches. The benefit
of the closed form solution is that it
can be calculated quickly and exactly.

One uses numerical solutions when
the system is too complicated for
closed form methods. They use itera-
tive calculations to approach an actual
solution as closely as possible. Because
of the iterative method used, a numer-
ical solution can take much more time

to calculate. But the approach solves
very complex kinematic systems.

Once More into the Trig

T o solve these problems, you need
to be pretty comfortable with

trigonometry. If you’re like me, your
trig is a little rusty. I recommend that
you get your hands on a good trig
book and go through the basic identi-
ties and conversion formulas. It will
make your descent into the wild world
of kinematics a lot less painful. You’ll
be surprised how much it will help out
your 3D programming skills, too.

Let me start by taking a look at the
closed form solutions. They’re much
easier to understand and provide a
strong basis for the iterative methods.
Take a look at the system in Figure 3.
This represents a two-joint articulated
arm in a single plane. By restricting
the motion to the x,y plane, the calcu-
lations are much easier. That doesn’t
mean it’s not an interesting case. A
character reaching for an object can
be calculated in a single 2D plane and
still maintain a lot of flexibility.

The first bone is of length L1 and is
rotated about the origin by θ1 degrees.
The second bone is of length L2 and is
rotated about the local axis by θ2
degrees. This puts the end position of
this system at P. By applying basic
trigonometry I know that the position
of the origin of the second bone is:

θ2 = (L1 * cos(θ1), L1 * sin(θ1))
(Eq. 1)

G R A P H I C C O N T E N T

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

10

F I G U R E S 2 A A N D 2 B . Figure 2A represents one translational degree of freedom, and Figure 2B represents one rotational

degree of freedom.

To solve these problems, you need to be pretty
comfortable with trigonometry. If you’re
like me, your trig is a little rusty. I recommend
you get your hands on a good trig book...

If I then add in the second bone, I
get a final position for P.

PX = (L1 * cos(θ1)) + (L2 * cos(θ1+θ2))
PY = (L1 * sin(θ1)) + (L2 * sin(θ1+θ2))

(Eq. 2)

This is the formula for the forward
kinematics for the system in Figure 3. It
represents the two degrees of freedom
in the figure. Because of the few
degrees of freedom and the restriction
to 2D, the formula is not that bad. But
what I really want to know is, given a

position P, what values for θ1 and θ2 do
I need to solve the equation?

One key piece of math that I’m
going to pull out of my rusty mind is a
couple of basic trig identities.

cos(a+b) = cos(a)cos(b) - sin(a)sin(b)
sin(a+b) = cos(a)sin(b) + sin(a)cos(b)

In order to finish it up, I need to
square both parts of Equation 2 and
add them together, applying my trig
identities along the way. This gives me
the following:

x2 + y2 = L1
2 + L2

2 + 2L1L2cos(θ2).
(Eq. 3)

I can now easily solve for θ2.

(Eq. 4)
The angle is obtained by inverting

the cosine operation.

(Eq. 5)
By solving for θ1 using Equation 2

and the identities, you get the final
piece of the puzzle.

(Eq. 6)
That’s all there is to it. It’s clear that

if there were many more degrees of
freedom, this technique would be
impossible. But for this problem, I’m
off and running. Equations 5 and 6
give me all I need to code a solution to
the system in Figure 3.

I Can’ t Reach that Far

A nother important issue in an
inverse kinematic system is the

idea of reachability. Given a position P,
is it possible for the figure to reach that
spot? A nice side effect comes out of
Equation 4. If the value of the division
is not in the range of -1 to 1, then the
point is not reachable by the figure. At
this point, I can bail out and avoid the
rest of the calculations.

θ
θ θ

1 =
− +(L x + (L

2L L
1 2 1 2

1 2

sin()) cos())L y2

θ2

2 2

1 2

Acos
x y

2L L
=

+ − −L L1
2

2
2

cos(
x

22

2

θ) =
+ − −y L L

L L

2
1

2
2

2

1 2

G R A P H I C C O N T E N T

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

12

///

// Procedure: Compute IK

// Purpose: Compute an IK Solution to an end effector position

// Arguments: End Target (x,y)

// Returns: TRUE if a solution exists, FALSE if the position isn't in reach

///

BOOL COGLView::ComputeIK(CPoint endPos)

{

/// Local Variables ///

float l1,l2; // BONE LENGTH FOR BONE 1 AND 2

float ex,ey; // ADJUSTED TARGET POSITION

float sin2,cos2; // SINE AND COSINE OF ANGLE 2

float angle1,angle2; // ANGLE 1 AND 2 IN RADIANS

///

// SUBTRACT THE INITIAL OFFSET FROM THE TARGET POS

ex = endPos.x - (m_UpArm.trans.x * m_ModelScale);

ey = endPos.y - (m_UpArm.trans.y * m_ModelScale);

// MULTIPLY THE BONE LENGTHS BY THE WINDOW SCALE

l1 = m_LowArm.trans.x * m_ModelScale;

l2 = m_Effector.trans.x * m_ModelScale;

// CALCULATE THE COSINE OF ANGLE 2

cos2 = ((ex * ex) + (ey * ey) - (l1 * l1) - (l2 * l2)) / (2 * l1 * l2);

// IF IT IS NOT IN THIS RANGE, IT IS UNREACHABLE

if (cos2 >= -1.0 && cos2 <= 1.0)

{

angle2 = (float)acos(cos2); // GET THE ANGLE WITH AN ARCCOSINE

m_LowArm.rot.z = RADTODEG(angle2); // CONVERT IT TO DEGREES

sin2 = (float)sin(angle2); // CALC THE SINE OF ANGLE 2

// COMPUTE ANGLE 1

angle1 = (-(l2 * sin2 * ex) + ((l1 + (l2 * cos2)) * ey)) /

((l2 * sin2 * ey) + ((l1 + (l2 * cos2)) * ex));

m_UpArm.rot.z = RADTODEG(angle1); // CONVERT IT TO DEGREES

return TRUE;

}

else

return FALSE;

}

L I S T I N G 1 . Compute an IK solution to an end effector position.

F I G U R E 3 . Closed form solution 1.

Another method for checking
whether the goal is reachable is to see if
the distance to the goal point is less
than or equal to the sum of the lengths

of the joints. This illustrates an impor-
tant point. When solving a kinematic
problem with analytical methods, it’s
not always possible to find a solution
that’s close enough. Sometimes you
don’t want close. You only want a solu-
tion if it’s correct. But if you would pre-
fer your system to be as close as possi-
ble, an iterative numerical solution is
probably better.

Bring on the Code

U sing these formulas in an applica-
tion is pretty easy. There are a cou-

ple of things to remember. The formu-
las assume that the base of the figure is
at (0,0). In the case of a character, this
may not be true. In my application, I
subtract the base offset from the desired
end position. This makes things work
out quite nicely. The other issue is that
the trig functions in C require radians.
If your animation system or API
requires degrees, an extra conversion
step is required. By using lookup tables
for the trig functions, or an animation
system that handles radians, this con-
version can be eliminated. However, on
current PC systems, this is probably not
an issue because the calculations are rel-
atively minor.

You can see the algebraic solution to
my inverse kinematic problem in
Listing 1. The routine sets the rotation

values of each joint in degrees if the
target position is in reach. You will
notice the reachability test right in the
middle of the listing.

Another Closed Form Solution

W hat I just went through is
known as an algebraic strategy

for the closed form manipulator.
Another strategy for solving the closed
form is the geometric solution. The
strategy is to break the problem down
into a couple of plane geometry prob-
lems. The problem is framed in Figure
4. The strategy is to create the line C
that extends between the origin and
the target position. We can then make
use of the law of cosines to solve for
angle θ2.

The law of cosines states

c2 = L1
2 + L2

2 - 2 L1L2cos(C).

I can substitute 180 - θ2 for C,
leaving

c2 = L1
2 + L2

2 - 2 L1L2cos(180 - θ2).

Applying the trig identity of the sum
of cosines and the facts that cos(180) =
-1 and cos(-θ) = cos(θ), I can substitute
cos(180 - θ2) with -cos(θ2). This yields

c2 = L1
2 + L2

2 + 2 L1L2cos(θ2).

You will notice that this is the same
as Equation 3. The same algebra is
applied to get the value for θ2. To solve
for θ1, I need to find the angles θ3 and
θ4. θ3 is easy.

θ3 = Atan2(b,a)

By applying the law of cosines again,
I can solve for θ4.

The inverse cosine is calculated so
that θ4 is between 0 and 180 degrees.
Then the angles are combined. They

are added if θ2 is less than 0 and sub-
tracted if θ2 is greater than 0.

θ1 = θ3 + θ4 // θ2 is less than 0
θ1 = θ3 - θ4 // θ2 is more than 0

I didn’t provide code for the geomet-
ric solution, but feel free to try it out
for yourself.

The Application

T he sample application this month
is a 2D inverse kinematic solver for

a two link manipulator. If you click
anywhere on the screen, Kine will try
and reach it. If the point is in his reach,
the solution is displayed. If the point is
not in reach, a message is displayed.
The application uses much of the same
framework as my previous articles. One
difference is that the display is an
orthogonal view. This works well for
2D displays.

We have the basics of inverse kine-
matics out of the way. Next month, I’ll
attack the more difficult problem of
solving arbitrary hierarchies using an
iterative numerical strategy. Until
then, check out the source code and
application on the Game Developer web
site. ■

cos(
a b

4

2 2

θ) = + + −L L
L c

1
2

2
2

12

G R A P H I C C O N T E N T

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

14

Craig, John J., Introduction to Robotics:

Mechanics and Control. Second

Edition. Reading, Mass.: Addison-

Wesley, 1989. This is a very good

book on robotics. It provides analyti-

cal solutions for many different

types of robotic manipulators.

McKerrow, Phillip John. Introduction to

Robotics. Reading, Mass.: Addison-

Wesley, 1991.

Watt, Alan and Mark Watt. Advanced

Animation and Rendering

Techniques. New York, New York:

ACM Press, 1992. Yes, I used it again.

Get the hint and get the book.

Heineman, E. Richard. Plane

Trigonometry with Tables. McGraw

Hill, 1956. An older trigonometry

book that I picked up a while ago. If

you are working on 3D graphics, you

need a book like it.

FF OO RR FF UU RR TT HH EE RR II NN FF OO

F I G U R E 4 . Closed form solution 2.

When solving a kinematic problem with
analytical methods, it’s not always possible
to find a solution that’s close enough.

b y O m i d R a h m a t H A R D T A R G E T S

It depends on you, the kings of con-
tent. No, really. You are the kings of
content. The killer app for interactive
television is gaming, it’s just that no
one knows what that means in prac-
tice. We just know that we can cram
more features and functions onto
smaller pieces of silicon, thereby
delivering more bang for the buck,
and we know that once you have digi-
tal television in place, you have a big
stream of digital data going into every
home. Which leads one to think: isn’t
the Internet just one big stream of dig-
ital data? That’s more grist for the
convergence mill. So, over the course
of the next couple of years, consumer
electronics companies, PC makers,
and anyone else with a yen to make a
set-top box, are going to spew media
rich processors and devices. Television
content is going to change dramatical-
ly as a result (sorry). So, who is going
to make the digital entertainment of
the future? Is it you? Perhaps it should
be. This latest incarnation of the con-
vergence bug is as inevitable as
Moore’s Law.

Moore’s Law and
the Darwinian Process

W hat Moore’s Law successfully
predicted, and what has

engaged the minds of chip designers
since, is that every 18 to 24 months we
can expect to cram twice as many tran-
sistors onto the same area of silicon.
The amount of silicon real estate that
you use determines the cost of a chip,
and an increase in transistors actually
correlates to an increase in chip perfor-
mance and throughput, which also
results in the mistaken assumption
that Moore’s Law just says that chips
get twice as fast every two years. It’s

not that simple. Gordon Moore was
really concerned with the way chips
are manufactured, and his pronounce-
ments helped Intel to create a simple
and highly effective business model:
build bigger and better chip fabrica-
tion plants, or fabs, to build bigger and
better processors. As long as you sell
the bigger and better processors, you
can invest in another set of new fabs,
and start the cycle again.

This fact has not gone unnoticed by
the other chip companies. It’s just
that none of them had the foresight,
or luck, to be in the PC business. So,
maybe they’re not as big and success-
ful as Intel right now, but these other
chip companies are looking for their
own monopolies — and a golden plat-
form to call their own. They have to
get their turn, and as the millennium
draws to a close, they just might have
the opportunity. One of the main rea-

sons for this ray of competitive hope
is that chip makers are reaching a
plateau in terms of what can be done
with new chip fabrication processes
and how much functionality they can
cram onto a piece of silicon before los-
ing touch with reality. After all, it isn’t
easy to keep track of millions of tran-
sistors. So, problem one with new chip
technologies is going to be design.
Chip designers have to find new ways
in which to handle the enormous
complexity of connecting millions of
transistors, maybe tens of millions of
transistors. No one company has the
answer.

Problem two has to do with the
physical problems of creating denser
chips. As a result of the need for atomic
level machinations, chip manufactur-
ing costs billions of dollars to imple-
ment. In the seventies, an Intel fab cost
somewhere between five to ten million.

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 8 G A M E D E V E L O P E R

17

The Chip Industry

A t last May’s CGDC, industry analyst Rob Glidden delivered an informa-

tive presentation on how chip technology and digital television stan-

dards are converging to create media processors that may just lay the

foundation for future gaming platforms. Or, maybe not.

Omid Rahmat works for Doodah Marketing as a copywriter, consultant, tea boy, and
sole employee. He also writes regularly on the computer graphics and entertainment
markets for online and print publications. Contact him at omid@compuserve.com.

80

.35 .25 .18

70

60

50

40

30

20

10

0

N
o

 o
f

Po
ss

ib
le

 T
ra

n
si

to
rs

-i
n

 m
il

li
o

n
s

Process-in Microns

F I G U R E 1 . The evolution of

processors.

.13

.18 micron

.25 micron

micron

1998 2001 2004

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

B
it

s
pe

r
ch

ip
 (

in
 b

il
li

o
n

s)

Year

F I G U R E 2 . The projected evolution

of DRAM.

That figure is now in the billions of
dollars (it seems that Moore’s Law can
also be applied to the cost of keeping
pace with the technology).

Problem three is the man-years of
effort that have to go into solving prob-
lems one and two. More complex parts
and more complex processes require
more people to make production hap-
pen. If that wasn’t enough, not only
does playing keep-up with Moore’s Law
get more expensive and difficult as time
goes by, but so does finding ways of
using the extra horsepower it brings to
chips. It’s one of the problems that the
PC industry has right now. Outside of
real-time 3D games, there isn’t much
else of mass market appeal to drive con-
sumer adoption of Intel’s high-end
desktop processors.
THE EVOLUTION OF PROCESSORS. Hand in
hand with evolutions in processors, we
also find that we get commensurate
increases in memory speed and capaci-
ty. Not only do we get bigger, better
processors, but we can stick a lot more
memory around them and run bigger,
better programs. One obvious benefi-
ciary of this situation has been 3D
graphics. For instance, Nvidia’s RIVA
TNT and 3Dlabs’ Permedia 3 will both

be manufactured in 0.25 micron
processes by the end of 1998.

As a result, graphics board vendors
are pretty much resigned to having
their sweet-spot products based on
these chipsets supporting 8MB of
memory as standard, with a small price
delta to move up to 16MB versions.
Expect street prices for these boards to
be in the $150 range. Not bad for the
consumer, although the cut-throat
pricing just makes you wonder how
these chips can get better, and cost less,
and support so many innovators. Well,
the fact that Nvidia and 3Dlabs are hit-
ting the same point in the performance
curve as 3Dfx, and doing so at extreme-
ly competitive price points, is not only
because of the expertise of these com-
panies, but also because they have
positioned themselves to take advan-
tage of the extra transistors available to
them this year. The same is true of
Matrox, S3, and ATI. But 3Dfx won’t
get left behind — they will be in 0.25
micron mode by the first half of 1999.
This leapfrogging in the graphics
industry is a simple example of how
chip companies can parlay their
knowledge of Moore’s Law into a com-
petitive catch-up dance.

The other implications of transistor
cramming are already appearing in
Intel’s MMX. In the near future,this
technology will be part of AMD’s
3DNow and Cyrix’s integrated graph-
ics. Furthermore, Intel’s Whitney,
which will put rasterization functional-
ity into core logic (thereby binding
some of the 3D pipeline with the
processor), also blurs the line between
computers and low-cost multimedia
set-top boxes. Obviously, Intel and
AMD are attempting to extend their
processors’ reach and reduce the
reliance on expensive external periph-
eral components (such as graphics and
audio chips). Some cynics might sug-
gest that with the lack of compelling
content that requires high-end proces-
sors, these chip companies have no
choice but to eat the lunch of other
components on the motherboard, and
compete on price. The reality is that
chip manufacturers have no choice but
to take over the real estate of the sys-
tem from other parties in order to drive
the platform, and also reduce costs. Is
it any wonder that Rendition was
bought by Micron, who had just
announced its purchase of Texas
Instruments’ memory business? Chip

H A R D T A R G E T S

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

18

4%

9%

1997 1998 1999 2000 2001 2002

U
n

it
s

(i
n

 m
il

li
o

n
s)

Year

PCs

17%

26%

34%

43%

Appliances

% Appliances of the Total Market�

60.0

55.0

50.0

45.0

40.0

35.0

30.0

25.0

20.0

15.0

10.0

5.0

0

F I G U R E 3 . Forecast of U.S. unit shipments of Internet appliances versus PC shipments (Source: IDC Research).

makers are looking at integration as
one way of making the most out of the
chip real estate they own.
THE EVOLUTION OF DRAM. In the last issue
of this column, I briefly mentioned VM
Labs. VM Labs’ business plan is simple
— add 3D games capability to DVD
players, and eventually DSS receivers, or
anywhere there is hardware for MPEG-2.
Console makers have noticed that the
number of transistors that will do
MPEG-2 decoding on set-top boxes is
enough to do a good job on real-time
3D. Nintendo, Sony, or Sega can just as
easily add MPEG-2 decode support to
their boxes. In fact, it’s rumored that
PlayStation 2 will be just such a device,
although Sony doesn’t seem convinced
that such a convergence is necessary or
practical for its gaming audience.
However, VM Labs provides some com-
pelling (although not unique) argu-
ments — and these arguments will only
become more compelling as we move
towards 0.18 micron technology, and
tens of millions of transistors per chip at
little cost. Yet, the question remains for
these alternative set-top boxes. Where is
the content going to come from?

Nothing but Internet

D espite the fact that semiconductor
technology issues point towards a

future of low-cost, media-rich platforms
that can handle 3D and MPEG-2 with
equal aplomb, neither would be as inter-
esting to the game development com-
munity as these potential platforms’
impact on the Internet. At present, the
PC is the dominant access point to the
Internet. However, market research
indicates that the future is not so PC-
centric. The Internet may provide the
answer to the content needs of these
media rich platforms. It’s a standard
that everyone can adhere to and under-
stand, and there’s enough content out
there to keep most consumers happy
right now, especially those who current-
ly have no PC access.

But the novelty of surfing the Web
will wear thin very quickly unless the
entertainment quotient rises a lot more.
That’s where the game development
community has a role — although that
may not sit well with the existing power
structures. At present, online gaming is
pretty much a hardcore, or enthusiasts’,

activity. As it gains in popularity, it
seems to get even more hardcore — just
take a look at some of the QUAKE clans
on the Web. These online gaming com-
munities are just one or two channels of
interactive entertainment. The raw
power of the chipsets within set-top
boxes is going to be sitting in people’s
living rooms, where the biggest audi-
ence is not hardcore gamers, but televi-
sion-watchers. Electrifying the couch
potato should be the mantra of game
developers who want a piece of this
action.

In effect, digital television and the
Internet are the wires into people’s
homes, and the new breeds of set-top
boxes are enabling technologies. It’s
somewhat akin to the emergence of
cable programming as a viable alterna-
tive to the big three networks. This new
cable revolution won’t be just about
gaming (maybe there’s room for the
Quicken Channel), but the opportuni-
ties are going to be there. Did I say, as
inevitable as Moore’s Law? I did. You
can’t stand in the way of progress, but
you can certainly catch a ride on it as it
rolls by. ■

19

irectMusic is a complete overhaul of the way that Windows

plays music. It replaces the basic code that Windows

applications use to get MIDI data out of a file,

through the computer, and to the output device.

It’s a completely rewritten and rethought system, all

the way down to what noises come out and how.

Has it arrived too late? Now that so many games are using

Red Book CD audio and other streaming mechanisms, is DirectMusic

enough to make MIDI relevant again to game developers? I think so —

no matter how you currently handle music in your games,

DirectMusic is definitely worth checking out.

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 8 G A M E D E V E L O P E R

21

Tom Hays serves as audio director for a mid-sized suburban game company. He loves his kids and
likes his beer. For more scintillating details, write tomhays@dnai.com

b y T o m H a y s

DD

Ill
us

tr
at

io
n

by
 B

en
 F

is
hm

an

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

22

D I R E C T M U S I C P R E V I E W

DirectMusic starts out by addressing
the major problems of Windows’ old
MMiiddiiOOuutt API, such as shaky timing and
limited real-time control. It offers con-
sistent playback of custom sound sets
using an open standard, Downloadable
Sounds Level 1 (DLS1). On top of that,
DirectMusic opens more than one
door to achieving adaptive musical
scores in games.

Like other SDKs from Microsoft,
DirectMusic will try to cover many

bases, not all of them related to games.
Most observers agree that it has some
great solutions for background music
on web sites. Are DirectMusic’s
approaches relevant to game develop-
ment? Its depth makes for a massive
API, with hundreds of pages of docu-
mentation. Is it too complex to use on
a project with a deadline?

This article is an overview of a big
piece of work that is still in alpha, so
don’t look at it as a review. It’s more of

a look at what DirectMusic is and what
it isn’t, to help you get some idea of
whether it fits your needs. The SDK
should be in beta as you read this, and
will be released as part of DirectX 6.1
late in the year.

Way Back When Down South...

B ack in the late 1980s and early
1990s, there lived in Atlanta, Ga.,

a team of imaginative, talented music
programmers called the Blue Ribbon
Soundworks. They made a MIDI
sequencer for the Amiga called Bars &
Pipes which was so innovative that
some people still keep an Amiga
around just to run it.

By 1994, Blue Ribbon’s main focus
was a technology called AudioActive,
part of which saw the light of day in
music-generating programs such as
SuperJam and Audiotracks Pro. Audio-
Active was an API and toolset that gen-
erated MIDI music performances on the
fly by using data types called styles and
personalities. At AudioActive’s heart
was a toolset for breaking compositions
into their component parts and an
engine for putting them back together.

To design this system, Blue Ribbon
examined the way that real performers
in various musical genres make the
decisions that affect the progress of a
piece. The system bore some concep-
tual similarity to musical Markov
chains, in which each note has a
weighted probability of going to each
other note. But AudioActive was quite
a bit more complex, subtle, and, in
true musician form, more subjective.
In some cases, it was able to create
very convincing performances.

From Atlanta to Redmond

T his pedigree was the first thing that
I, and many other developers,

heard about Microsoft’s new music sys-
tem. It made us skeptical from the out-
set. Microsoft’s developer-hype litera-
ture still emphasizes DirectMusic’s
real-time music generation aspects to
such a degree that it looks like
AudioActive: The Sequel. Despite auto-
matic music’s enormous gee-whiz fac-
tor for us computer music types, I
couldn’t help but feel that its real-
world use would simply be one more

D ownloadable Sounds Level

1, or DLS1, is a nonpropri-

etary specification made

by the Interactive Audio

SIG of the MIDI Manufacturers’ Asso-

ciation. It lays out an architecture and

file system for a really basic sample-

based synthesizer.

DLS was motivated by developers’

desire to be freed from the constraints of

the fixed palette of sounds found in

General MIDI wavetable ROMs. Another

problem with General MIDI synthesizers

is the fact that their musical response is

inconsistent — the General MIDI specifi-

cation failed to carefully specify things

such as exact envelope responses and

volumes. What’s more, the synthesizers

often just plain sound bad. This experi-

ence made game sound developers want

a system by which their music would

sound the same on every user’s system.

And of course, the hardware folks wanted

to make MIDI relevant again in a new

way, so that they could develop and sell a

new generation of hardware.

DLS was written with acceleration in

mind. Since the working group that

hashed out the specification was primarily

made up of hardware vendors, no existing

sound cards could get shut out by setting

the standards too high. The idea was to

make something that would run on

Creative Labs’ AWE32 and other early

1990s sound cards and then get their

manufacturers to write DLS1-compatible

drivers. Unfortunately, developing and

ratifying this took from 1994 until 1997,

and the drivers for existing hardware

never materialized.

Where DLS1 actually did emerge was in

1997’s Microsoft Software Synthesizer, the

Miles Sound System API, and in drivers for

PCI chipsets such as S3’s SonicVibes. Now

that DirectMusic is in alpha, several mak-

ers of PCI-bus sound hardware are making

Windows driver model (WDM) Direct-

Music-compatible DLS drivers.

While the world waits for everyone to

get these new sound cards and drivers,

DLS will largely rely upon the new version

of the Microsoft Software Synthesizer

supplied with DirectMusic. It’s bare

bones DLS1 (no filtering), with reverbera-

tion added. This simplicity lets it claim

only 0.35 percent of the CPU per voice in

a Pentium 166MHz MMX, meaning that a

song with 10 voices playing at any given

time would take up 3.5 percent of the

CPU’s cycles. On a Pentium II 266MHz,

these figures drop to 0.12 percent per

voice. (These figures are for the reverber-

ationless current release, running at

22KHz 16-bit stereo output.)

Of course, these figures will drop to

almost nil on systems that have

DirectMusic-compatible acceleration of

DLS. There are already sound chipsets on

millions of computers, from ESS, S3,

Analog Devices, and others, that already

use DLS via proprietary drivers.

Standardized WDM drivers for these will

put DLS acceleration into many existing

machines with just a driver update.

A common argument against software

synthesizers is that they require memory

for holding instrument samples. Unlike

the AWE32 and AWE64, which had on-

card RAM, these new PCI accelerators use

system RAM and move everything across

the PCI bus. Whether or not a developer

uses custom samples, the same overhead

is there. They have no ROM-based wave-

tables. With modern hardware and WDM

drivers, if you’re going to use MIDI at all,

it might as well be custom DLS.

What is DLS?

CONTINUED ON P. 23.

way for a skinflint producer to avoid
paying for professional composition.

But over the past three years, plenty
has happened. The trademark
“AudioActive” is now used for an
MPEG-2 audio player from Germany.
Blue Ribbon Soundworks was pur-
chased by Microsoft in late 1995, and
its principals moved from Atlanta to
Redmond. Its development lead, Todor
Fay, continues to spend many days in
trade group meetings small and large,
listening to what people who make and
support music for interactive products
want and discussing his team’s ideas.

Fay apparently doesn’t like to say
no. DirectMusic incorporates a truly
frightening number of features,
including some of the features that
developers have been asking for in a
music API. It includes an evolved,
100-percent rewritten version of what
used to be AudioActive. It also
includes hooks for replacing, adding,
or modifying any component in the
entire system with whatever music
generator or filter you or a third party
might come up with on your own. It
gives applications access to MIDI and
other control data in real time.

The fact remains that this open
architecture was written with a certain
approach to adaptive music at its core.
It’s an odd thing to find in a Microsoft
API: a highly involved music recom-
biner and regenerator — neat thing,
but not the right solution for every-
body. Sometimes, in poking through
the SDK with a different need in mind,
a developer will be mystified and frus-
trated at some of the approaches and
some of the omissions. However,
DirectMusic does try to offer solutions
for those who don’t wish to use the
System Formerly Known as Audio-
Active. Thus far, Microsoft’s publicists
have done themselves and developers a
disservice by giving the impression
that the interactive music engine is the
core reason to look at DirectMusic.
This is definitely not true.

In its alpha stage, DirectMusic is such
a big package that many people’s first
impression is that it’s just too complex
to use on a typical project. One of the
things I set out to do in researching this
article was to see if there were reason-
ably simple paths to solutions for com-
mon problems buried in the over 300
pages of API documentation. Microsoft
needs to do this if they want to sell

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

24

D I R E C T M U S I C P R E V I E W

DLS2 is being written for a much more

advanced generation of hardware. Nothing

has been announced, but common sense

would dictate that it will plug the obvious

holes of DLS1. The main new features will

likely include dynamic filtering attached to

envelopes and low frequency oscillators

(LFOs), reverberation, and better layering

abilities. It will remain a nonproprietary

standard, letting a DLS2 collection play on

any hardware — Windows or not — that

has the right drivers. It’s not unrealistic to

expect to find DLS1 or 2 showing up

attached to specifications such as

QuickTime, .AVI, or MPEG, and in various

web and console applications.

In the meantime, DLS1 is very much

worth checking out for most game devel-

opment teams that use in-game music. As

of this writing, the alpha version of the

Microsoft Software Synthesizer was miss-

ing some key features such as reverbera-

tion, decompression (through Windows’

Audio Compression Manger), and the

ability to play large samples. Therefore, I

can’t assess what it can really do for a

number of real-world game applications.

If it works as advertised, it will support

many interesting techniques for deliver-

ing music in a standardized format.

Except for quality variance in users’

speakers, amplifiers, and digital-to-ana-

log converters, DLS files will sound exact-

ly the same wherever they play.

Alternatives
In CPU-intensive applications (read: most

games) that wish to use MIDI and can tol-

erate ROM-based General MIDI, installa-

tion or startup code can check whether or

not the system has DLS acceleration or an

old-fashioned ISA card with fixed General

MIDI. Then it can choose an output

device, striking its own balance of speed

vs. sound quality.

Developers who want a richer synthe-

sis model than DLS Level 1, and are will-

ing to take an additional CPU hit, will find

other vendors’ software synthesizers

making themselves available as replace-

ments for the Microsoft synthesizer.

Shark Food?
There is one red flag waving over wide-

spread use of DLS: sample copyrights.

Some providers of musical instrument

samples are getting nervous about hav-

ing versions of their samples floating

around in DLS collections.

This makes sense in the context of mak-

ing DLS collections to publish on the ‘net

and share with your buddies. For game

developers, though, common sense would

dictate that this is a non-issue. Just fold

your DLS collections into a resource file

along with the rest of your copyrighted art

and sound, so that only dedicated hackers

have a chance of pulling out the data. To

be even safer, encrypt the data. This way,

the data presents itself in exactly the

same way that it would if it was recorded

on a music CD: mixed in with other instru-

ments in a stereo output stream.

Beyond this, the revenue models for

selling samples to developers and to hob-

byists are completely different. When a

vendor sells a sample to a developer, it

usually costs a great deal of money and

comes with full rights to use the sample

in a piece of music or audio-visual prod-

uct for sale to the masses. If one of these

samples leaks out to the public and is

used as a Windows startup sound, the

loss to the creator is commensurate with

the cost of one sample on one of those

“1,001 Whacky Windows System Noises”

CDs — maybe ten cents per user, as

opposed to two bucks or more for a sam-

ple off of a professional library.

However, lawyers aren’t known for

their common sense. They are known for

going to great lengths to maximize the

revenue of their employers, period.

Hopefully, sample providers will come up

with a licensing scheme or an industry

agreement for acceptable use. Also, com-

panies might start coming out with DLS

collections, which will force them to fig-

ure out licensing. Until this happens, if

developers start including samples

straight off of commercial sources such

as CDs — or even ROM-based profession-

al synthesizers — without getting DLS-

specific permission, someone might sue.

Then, whoever has the most money for

lawyers will make the rules.

This is no reason not to use DLS. Create

new samples and get permission for any

commercial samples you use. If you’re

feeling daring, don’t follow these guide-

lines, but encrypt your data (neither the

author nor Game Developer magazine

takes any responsibility for any legal con-

sequences of actually following my

advice, however).

What is DLS?(Cont.)

DirectMusic to the game development
community; as DirectMusic approaches
beta (early July), the company is rewrit-
ing the documentation with this
approach in mind.

DirectMusic’s Innards

D irectMusic’s headlines for most
people who make games are DLS

support for hardware acceleration and
MIDI with over a million channels and
rock-solid timing. It’s a big package,
consisting of several major parts that
operate on different levels. It’s not nec-
essary to use or even understand all of
the components to make good use of
parts you need.

For starters, DirectMusic replaces
Windows’ MidiOut technology with a

new model. DirectMusic’s MIDI support
has subsample timing accuracy, allows
flexible selection of output ports (in-
cluding third-party creations), and lets
applications inspect, filter, and modify
MIDI data as it comes out. The release
version will also multiply MIDI 1.0’s 16
channels by a healthy 65,536, for a
total of 1,048,576 discreet channels
(called ppCChhaannnneellss within DirectMusic).

The biggest single claim that
DirectMusic has to making MIDI rele-
vant again is its support for DLS.
According to its developers, the bundled
Microsoft Software Synthesizer was
using 0.12 percent of the CPU per voice
on a Pentium II 266MHz MMX as of late
June. These numbers will get a bit worse
when reverberation is added (reverbera-
tion wasn’t included in the API as of
this writing, but is scheduled to happen

before final release). Under the Win32
Driver Model in Windows 98 and
Windows NT, this is open to hardware
acceleration by PCI-bus sound cards.

DirectMusic includes a Roland-made
General MIDI/GS sound set. However,
the really great thing about DLS is that
it opens up MIDI in games to a variety
of techniques for using samplers that
electronic musicians have built up over
the years. These range from basic
wavetable-style techniques (but with
any choice of sample data) to sampling
entire musical phrases and triggering
them via MIDI commands.

If MIDI is a dirty word for many game
developers, it’s not because of MIDI
itself, which is simply a control mecha-
nism and has no intrinsic sonic quality,
good or bad. It’s because of the inconsis-
tent, usually low quality, fixed sample

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

26

D I R E C T M U S I C P R E V I E W

Style

Pattern

Part

Variation

Note

Note

Note

Note

Pattern

Variation

Part

Variation

Note

Note

Note

Note

Variation

Note

Note

Note

Note

Variation

Note

Note

Note

Note

Variation

Part

Variation

Note

Note

Note

Note

Variation

Note

Note

Note

Note

Variation

Note

Note

Note

Note

Variation

Note

Note

Note

Note

Part

Variation

Note

Note

Note

Note

Variation

Note

Note

Note

Note

Variation

Note

Note

Note

Note

F I G U R E 1 . Elements of Style: Notes within Variations within Parts within Patterns within Styles. Many Properties can be set

at each level or allowed to use to value of its parent.

sets in the built-in synthesizer ROMs on
most sound cards. DLS lets MIDI go
back to being a timing, control, and
note-triggering mechanism, as opposed
to being a synonym for crappy-sound-
ing game music . When MIDI is freed up
to do its stuff, it can provide the granu-
larity, malleability, and reaction time
needed to make music react to what
goes on in an interactive world.

As I mentioned, DirectMusic was
conceptually built up from its special-
ized music-digesting system, the most
controversial and confusing part of the
SDK. This system is good at its original
purpose, but that’s not the whole story.
It has a big side-benefit: a way to play
and control segments of MIDI data,
apply tempo maps and data filters, and
concatenate them into other segments
at musically-appropriate junctures
(Figure 1). APIs such as the Miles Sound
System (see Andrew Boyd’s review on
page 51), HMI’s Sound Operating
System, and DiamondWare’s STK have
already been doing this sort of thing
(and more) under Windows despite
MidiOut’s limitations. All of these
SDKs’ developers are likely to be able to
do more interesting things more reli-
ably under DirectMusic.

Segments, Tracks and Tools

D irectMusic’s essential playback
unit is the track. Tracks are con-

tained inside segments (Figure 2).
Typical examples of tracks and seg-
ments would include:
• an imported MIDI file, which the sseegg--

mmeenntt object splits into three tracks
containing notes, tempo, and time
signature information (Figure 3);

• a style playback segment that points
to one or more styles, which are com-
positions that have been abstracted
to some level and can change based
on real-time input;

• groove, chord map, and signpost seg-
ments that the interactive music
engine can use to generate style play-
back segments;

• special-purpose segments, such as a
mute segment, that can automate
playback by turning channels on
and off.
For those who wish to do complex

things with music that can’t be done
with the built-in generation system,
DirectMusic is built to be extended. For
starters, tracks and segments are an
extensible data type. Because they are
the core playback unit, they will let

Microsoft and third-
party vendors address
any fundamental
complaints from
developers.

DirectMusic also
incorporates objects
called Tools, which are
intended to be easy for
developers or third
parties to write. These
sit in what’s called a
tool graph, which
makes all tools present
cooperate with one
another. A tool can
operate on just one
logical chunk of music
(a segment) or can
process the entire out-
put. If DirectMusic
catches on, expect to
see scads of tools writ-
ten to plug its holes,
such as a MIDI chan-
nel and note mute
mask, a MIDI echo, a
velocity modifier, a
quantizer/dequantizer,
and so on.

For hardware vendors who want to
extend the API to include new capabili-
ties, DirectMusic provides a mechanism
called the property set. Each of these is
tied to a Global Unique ID (GUID), and
each gets its own index of individual
properties, indexed from 0. A given
attribute index for a given GUID is
always the same. For example, let’s say
that a developer has built an interface
and drivers to hook a real siren to the
parallel port. In order to integrate the
device’s API into DirectMusic, the
developer would publish the GUID of
the “DirectSiren,” along with its
indexed property set. An application
supporting DirectSiren could then use
DirectMusic’s IIKKssPPrrooppeerrttyySSeett interface to
see whether or not the DirectSiren’s
DDeeaaffeenniinnggAAiirrRRaaiidd property is available.

Programming with DirectMusic: A
Smorgasbord of COM objects

D irectMusic consists of 24 distinct
COM objects. This lets developers

use only the portions they need. For
example, if you just want MIDI output,
you don’t need to incur the overhead
of DLS or the learning curve of any
interactive music code.

It also means that developers can
replace entire sections of the system
with ones that meet their needs. The
idea is to make an architecture robust
enough that third-party vendors of
related products and tools will have a
much easier time, and won’t need to
reinvent the wheel in order to support
the code they really want to provide.
For example, Headspace is making a
version of its web-based music
player/generator Beatnik that inte-
grates the DirectMusic API.

The DirectMusic Loader

A t DirectMusic’s technological core
lies the Loader, responsible for

locating, loading, and registering
objects. It was designed with low-band-
width applications in mind, so it
strives for efficiency.

To use the Loader, generally the first
step is to set a search directory. This
isn’t required; an object can be refer-
enced by full path name. URLs are not
yet supported. Once a search directory
is set, the Loader can search for objects

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

28

D I R E C T M U S I C P R E V I E W

Segment

File

Groove Track

SEGMENT

Chord Progression Track

Style Playback Track

Groovy

Style

Bummed

Orchestra

Style

Soft Rock

Death

Style

F I G U R E 2 . Basic style playback using a prebuilt seg-

ment file. The Style Playback Track can point to different

Styles as playback progresses.

using its SSccaannDDiirreeccttoorryy method and enu-
merate them in a database of their
names and GUIDs.

The Loader’s caching system relies
upon this database: if an application
asks for the same object twice (even in
different locations), and if that object
is in the database, it doesn’t need to be
loaded a second time. Caching is
enabled for all objects by default, but
can be turned off and on with the
Loader’s EEnnaabblleeCCaacchhee method. For a bal-
ance between conserving RAM and
avoiding repeated loads of the same
object, an application must make
smart use of the CCaacchheeOObbjjeecctt, RReelleeaassee-
OObbjjeecctt, and EEnnaabblleeCCaacchhee methods. Of
course, there will be cases where
caching is not good — browsing
through tons of instruments in a DLS
editing application, for example.

Once this database exists, an appli-
cation can use the Loader’s EEnnuummOObbjjeecctt
method to show all objects of any class
or classes in the database and then
make an instance of the object (with-
out duplicating data) using the
GGeettOObbjjeecctt method.

Output API:
Instruments and Ports

T he basic means by which
DirectMusic makes actual sounds

come out of the digital-to-analog con-
verters of a game player’s PC is DLS.
The API represents DLS instruments
with the DDiirreeccttMMuussiiccIInnssttrruummeenntt object,
and sets of instruments (Collections
and Bands) with the DDiirreeccttMMuussiiccCCoollll-
eeccttiioonn and DDiirreeccttMMuussiiccBBaanndd objects. The
way any of this gets out of the box is
via a PPoorrtt object.

To use DLS in an application, first
you must have one or more files full of
DLS instruments, comprising both
sample data and associated control
(articulation) data. This industry-stan-
dard (not just Microsoft’s) file type is
known as a DLS Collection. As a sim-
ple enhancement to General MIDI,
you can use the General MIDI/GS DLS
collection bundled with DirectMusic.
This way, all of your users will hear the
same sounds, and you won’t play
sound-card roulette.

Of course, using the stock GS set
sort of misses the point of using cus-
tom sounds. The better way is to have
your crack team of composers and

sound designers deliver custom DLS
collections comprising instruments
specifically developed to go along
with your game’s music. Sound
designers can also supply DirectMusic
bands, which are detailed references
to DLS data in one or more collections
(Figure 4).

Basic Playback with
the Performance API

D irectMusic’s playback objects
include PPoorrtt, PPeerrffoorrmmaannccee, TTrraacckk, and

SSeeggmmeenntt. The PPeerrffoorrmmaannccee object is the
music playback überobject. It adds and
removes PPoorrtts, downloads IInnssttrruummeenntts,
attaches graphs of TToooolls, deals with
event notification, and plays SSeeggmmeenntts.
SSeeggmmeenntt objects contain data in one or
more TTrraacckks, which is where the actual
music data resides.

A DirectMusic TTrraacckk is not the same
thing as a track within a type 1 MIDI
file. In fact, a DirectMusic SSeeggmmeenntt can
contain all of the data from an entire
imported MIDI file.

About the simplest thing an applica-
tion can do with DirectMusic is to cre-
ate a PPeerrffoorrmmaannccee, create a LLooaaddeerr, and tell

it to load a single MIDI file. The LLooaaddeerr
returns the MIDI file in the form of a
SSeeggmmeenntt. To play the SSeeggmmeenntt, call the
PPeerrffoorrmmaannccee’s PPllaayySSeeggmmeenntt method.

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 8 G A M E D E V E L O P E R

29

Track 1:

MIDI

Events

Standard
MIDI
File

D
irectM

u
sic

Lo
ader

Track 3:

Time

Signatures

Track 2:

 Tempi

SEGMENT DATA OBJECT

F I G U R E 3 . An imported MIDI file,

which the sseeggmmeenntt object splits into

three tracks containing notes, tempo,

and time signature information

DLS Device

DLS Collection File

DLS Collection File

Band

F I G U R E 4 . Bare-bones MIDI playback with custom instruments: load a Standard MIDI

File, load a DLS Collection or Band, and play.

While it’s possible simply to play a
MIDI file without invoking any more of
the Performance API than I just
described, an application can easily
bring to bear more of DirectMusic’s
control mechanisms. For example, you
could create a Performance containing
Segments, each comprising a single,
complete MIDI file. Using the
Performance API, an application can
then queue, layer, and modify these
Segments. Each Segment can get a delay
value when queued for playback; this
value can then adjust itself to match
tempo changes. The PPllaayySSeeggmmeenntt method
also accepts a parameter telling it what
type of rhythmic juncture — beat, bar,
note, and so on — to jump in on. By

playing multiple
Segments simulta-
neously, an appli-
cation can add
and subtract musi-
cal elements.

The next logical
item on many
game music com-
posers’ current
wish lists is a way
to manage seg-
ment playback
based on game
state inputs using
an authoring-level
scripting scheme
or something sim-
ilar. Using a set of
variables shared
between the

music engine and the host application,
this type of system could emulate what
a music editor does for a film: watch
what’s going on and select, mix, and
match existing musical elements
accordingly.

High-level scripting isn’t part of
DirectMusic. Some developers think this
should have been the fundamental
thrust of any music system from Micro-
soft, and that DirectMusic misses the
point. Its authoring-level logic doesn’t
go beyond the single-segment level; to
do more requires application code.

On the other hand, I can’t see any-
thing in DirectMusic’s architecture
that would preclude a higher-level sys-
tem for real-time rendered music edit-

ing. Its low-level
code should make
this sort of thing
easier and more
reliable than it
was under the old
MidiOut system.

Layers

D irectMusic’s
sharp timing

comes courtesy of
its core layer. This
layer also supports
the software syn-
thesizer and other
DLS-related ser-
vices. It supports
buffered, time-
stamped MIDI

input and output, letting the system do
things such as play multiple sequences
with completely independent timing.
Normally, DirectMusic itself sequences
the MIDI data, but others can write
their own sequencers and plug them
into DirectMusic. All of the higher-level
stuff — loading and playing files and
the interactive music engine — is part
of the performance layer.

Composing with DirectMusic
Producer

D irectMusic has two audiences that
it must please: audio creative types

and programmers. The face of
DirectMusic for a musician or sound
designer is an application called
DirectMusic Producer. A tutorial, or
even a decently comprehensive review,
should be the subject of another full fea-
ture article once the tool is complete.

Producer’s nature reveals itself with
the “Insert File into Project” dialog,
when it shows a list of the sorts of
things it can open. These include all of
DirectMusic’s editable data types:
Bands, DLS Collections, Chord Maps,
Templates, Segments, and Styles. Each
of these existing data types has its own
interface within Producer (Figure 5).
These almost behave as their own
applications, except that they can pass
data back and forth and can be built
into unified projects.

One great thing about Producer is
that it comes with an API that lets
developers build new editing tools into
the application. This means that if, for
example, a vendor wanted to make its
algorithmic music generator available
as a DirectMusic component, it could
build the editor right into the
Producer, allowing it to talk with other
components such as the DLS editor.

How Deep Do You Want to Go Today?

D irectMusic’s Interactive Music
engine can be used to varying

degrees. The deepest levels are only
going to be of interest to a few develop-
ers, as they get into rather specialized
solutions. The simplest level should be
of interest to plenty of developers: just
import one or more MIDI files, each as a
segment, and thus make them available
to the API for queuing and scheduling.

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

30

D I R E C T M U S I C P R E V I E W

F I G U R E 5 . DirectMusic Producer's Downloadable Sounds

(DLS) editing windows.

F I G U R E 6 . A Pattern screen, with one Part expanded for

editing, the Part's Properties dialog, and the notes of one of

its Variations on a piano-roll timeline.

The next level gets into a data type
called a Style. Styles contain patterns
(Figure 6), which are like MIDI sequence
files in that they contain one or more
parts, each with a single instrument,
that can be set to play with no random-
ness or variation. So, conceptually, the
simplest style is just like a MIDI file.

Going one step deeper, you can add
variations to individual parts (Figure 7).
Typically, these are made by copying
the contents of a part and adding or
subtracting notes to change its feel and
density. You can tie together variations
in different parts within a style, so that
they encompass more than one instru-
ment. These variations can then be
chosen either by the game’s code or by
parameters set within the music engine.

A more basic parameter for selecting
patterns is a number ranging from 1 to
100 called Groove Level. Groove Level
can derive from a Groove Track, but it
can also be set by your game based upon
state variables. The more intense the
state of things, the higher the Groove
Level. This lets DirectMusic choose pat-
terns based upon the groove ranges
assigned to them by the composer.

More than one pattern can play at
once. Unless a secondary pattern has
tempo data associated with it, it will
take its timing from the main pattern.
A specialized type of pattern, called a
motif, is intended to be triggered by
events. Motifs generally consist of only
one or two instruments and are short.
The simplest example might be a single
drum hit.

Up to this level, no actual notes are
being generated or even bent by the
music engine. It’s simply been storing,
playing, and combining musical ele-
ments that were fully composed by a
human being. The most extensive use
of this engine in a game to date,
Monolith’s SHOGO - MOBILE ARMOR

DIVISION, went no deeper than this.
The next step, if you take it, starts

automatically transposing some notes.
This involves a segment track type
called a chord progression (Figure 8).
To use one, abstract the chord changes
from your piece of music and use
DirectMusic Producer to place them in
a chord progression track within the
segment. On playback, the style engine
recreates the proper notes by mapping
the notes in the style to the harmonic
information within the chords. Each
chord supports up to four subchords,
called levels.

Using chord progressions requires
building in a bit more information into
your parts and variations. Various
attributes can be set at levels ranging
down to the individual note to deter-
mine whether or not a musical element
can be transposed by a chord, and if so
how (Figure 9). Variations can be set to
play only at certain scale positions or
junctures. Parts can be assigned to dif-
ferent levels within the chords.

Beyond this, DirectMusic includes
templates and chord maps (formerly
called personalities), which the compo-
sition engine can use to automatically
generate segments (Figure 10). A tem-

plate is a segment that has everything
for style playback except the chord pro-
gression track. Instead, the template
includes a sign post track, which defines
a road map for how to place chords in
the chord progression. A separate file
known as a chord map defines the actu-
al chords as well as rules for mapping
them to the sign post track. These
include sign post chord definitions and
a tree graph of chord connections. The
composer who creates the template can
build in weights for the probability of
choosing one chord over another at a
given juncture in the music.

The composition engine combines
the chord map and template to create a
style playback segment with the result-
ing chord progression, along with the
template’s groove track and style play-
back track. By combining different
chord maps and styles with a single
template, an application freshly com-

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 8 G A M E D E V E L O P E R

31

F I G U R E 7. A Pattern screen, with parts showing controller

data and multiple variations. The button marked with a

chord and a question mark opens a dialog for each varia-

tion, letting a composer choose its harmonic situations.

F I G U R E 8 . Basic style playback using a prebuilt segment

file. The Style Playback Track can point to different Styles as

playback progresses.

F I G U R E 9 . Properties available for

each individual note in a style. The

Variations tab opens a set of check-

boxes attaching the note any of the

variations in the pattern.

poses musical variations for each scene.
And then there are shapes, which

actually generate templates: “Give me
forty bars of music that rise, and then a
snappy 12-bar coda.” It’s a bit more
involved than that, but you get the idea.

By the time you’re using shapes, the
chord progression is truly generative,
but the original composition work that
went into the style still peeks through.
For more information on templates
and shapes, see the documentation on
Microsoft’s DirectX web site.

Templates and shapes can create
style playback segments offline, for
example during a game level load. This
won’t interrupt whatever playback
DirectMusic is up to at the time.

The Future

A common thought about Direct-
Music is that it should merge with

DirectSound, combining the APIs’
strengths and addressing their weak-

nesses. According to Kevin Bachus,
DirectMusic’s product manager,
“DirectSound and DirectMusic are really
siblings in the same audio organization.
Seamless integration of DirectSound
and DirectMusic is very important.
Expect to see more and more conver-
gence in future versions of DirectX.”

DirectMusic’s DLS output can benefit
from DirectSound-specific features
such as spatial positioning (a.k.a. 3D
sound). In turn, DLS offers control over
sound effects from within authoring
tools, letting sound designers take
some of the sound effects implementa-
tion out of the hands of programmers.
It can also offer features of which
DirectSound has no inkling — such as
envelopes and midsample looping —
which can be completely set up by a
sound designer and triggered using
standard MIDI commands.

As I mentioned, this is a big package.
It attempts a great many things, and
based on the alpha version, it seems to
do many of them well. It doesn’t

include some things
that many developers
wanted, especially a
track-based, scriptable
system for controlling
adaptive music play-
back. However, what it
offers is closer to solving
some of the same prob-
lems than might seem
evident at first glance.

So, what is
DirectMusic good for?
Who is it good for? For
those game developers
who continue to use
MIDI as their games’
music output, the basic
architectural improve-
ments are long overdue.
For those who can real-
ize their music well
using custom DLS1
sound sets and can
afford some CPU hit on
unaccelerated user
machines, DLS will be a
relief from being stuck
with inconsistent play-
back and General
MIDI’s limited palette
of sounds. If you have
plenty of disc space,
don't need run-time
access to the CD drive,

want dirt-simple programming, and
don’t care about adaptivity in your
music, Red Book remains the way to
go, even though DLS can do full CD
quality (44KHz 16-bit stereo).

If you want to do adaptive music,
first analyze what you want to happen.
Perhaps videotape some game play and
score music to this using traditional
techniques. Once you’ve figured out
how music should ideally operate in
your game, look at both the controls
your code needs to spit out and what
the music engine needs to do in
response. Once you’ve defined the task
to this degree, you may or may not
find your solution within DirectMusic.
Take a look at third-party APIs such as
Miles or DiamondWare; you’re likely to
find the codebase you need without
writing it all yourself.

If you want an adaptive digital audio
streaming engine, try doing this with
large samples under DLS. With the
software Microsoft has supplied as of
this writing, I can’t judge whether this
will work well or not.

Will DirectMusic make MIDI rele-
vant again for you? What am I, your
mother? Set aside a day and check it
out. If nothing else, it’s brain candy.
Enjoy. ■

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

32

D I R E C T M U S I C P R E V I E W

SEGMENT

Chord ProgressionTrack

Groove Track

Style Playback Track

Groove Track

Signpost Track

Style Playback Track

TEMPLATE

Chord

Map File
Template

 File
Shape or

F I G U R E 1 0 . The Composer engine can create unique

Style Playback Segments by combining Templates with

Chord Maps. Templates can be pre-built, or generated

using Shapes.

Microsoft DirectX Documentation
http://www.microsoft.com/directx

To get information and offer feedback

about DirectMusic, e-mail

dxmusic@micr0soft.com

General Reference
Kientzle, Tim. A Programmer’s Guide to

Sound. Reading, Mass.: Addison-

Wesley Developers Press, 1998.

Interactive Audio Special Interest Group
(IA-SIG)
http://www.iasig.org

MIDI Manufacturers’ Association
http://www.midi.org

FF OO RR FF UU RR TT HH EE RR II NN FF OO

The author would like to thank
Microsoft’s Todor Fay and Dan Teven of
Teven Consulting for their assistance
with this article.

Acknowledgements

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 8 G A M E D E V E L O P E R

33

D I R E C T X S T U D Y

b y J a s o n L . M i t c h e l l , M i c h a e l T a t r o
a n d I a n B u l l a r d

programming model, provide program-
ming examples, and spend some time
addressing the issues involved in
robustly taking advantage of multitex-
turing hardware while maintaining
fallback paths for application-level
multipass methods. We have also creat-
ed MulTex, a simulator that interac-
tively illustrates this potentially puz-
zling new feature of Direct3D.
Experimenting with MulTex is a good
way to gain some familiarity with the
texture blending abstraction. MulTex is
available from the Game Developer web
site and is definitely useful to have by
your side as you read this article.
(MFCTEX, a similar tool written by
Microsoft, ships with the Microsoft
DirectX 6 SDK.)

The Traditional Pixel Pipeline

I n previous versions of DirectX, the
texture mapping phase of the

Direct3D pixel pipeline has only
involved fetching texels from a single
texture. The two gray pipeline seg-
ments in Figure 1 are the stages in the

traditional pipeline that deal with
determining texel color and blending
that color with the color of the primi-
tive interpolated from the vertices.
These two stages of the pipeline are
replaced by the new multitexturing
abstraction. The rest of the pipeline
remains untouched.

Texture Operation Units

D irectX 6 introduces the concept of
a texture operation unit. Each

unit may have a single texture associat-
ed with it, and up to eight texture
operation units can be cascaded
together to apply multiple textures to a
common primitive.

Each texture operation unit has six
associated render states, which control
the flow of pixels through the unit, as
well as additional render states associat-

ed with filtering, clamping, and so on.
Figure 2 shows two texture operation
units cascaded together. We’ll limit our
discussion here to the dual texture case
to keep things simple and because most
of the near-term 3D hardware will sup-
port only two textures.

Three of the render states in each
texture operation unit are associated
with RGB (color), and another three are
associated with alpha. For RGB color,
the render states DD33DDTTSSSS__CCOOLLOORRAARRGG11 and
DD33DDTTSSSS__CCOOLLOORRAARRGG22 control arguments,
while DD33DDTTSSSS__CCOOLLOORROOPP controls the opera-
tion on the arguments. Likewise,
DD33DDTTSSSS__AALLPPHHAAAARRGG11 and DD33DDTTSSSS__AALLPPHHAAAARRGG22 con-
trol arguments to DD33DDTTSSSS__AALLPPHHAAOOPP.
Essentially, the DD33DDTTSSSS__CCOOLLOORRx render
states control the flow of an RGB vec-
tor, while the DD33DDTTSSSS__AALLPPHHAAx render states
govern the flow of the scalar alpha
through parallel segments of the pixel
pipeline, as shown in Figure 2.

Multitexturing in DirectX 6

ne of the most interesting features introduced to

Direct3D in the recent release of DirectX 6 is

multiple texturing. Unfortunately, it’s also

one of the more confusing new features.

This article will introduce multiple texture

mapping into the context of the traditional

pixel pipeline. We will describe the multitexture

Jason L. Mitchell (JasonM@atitech.com) is a software engineer in the 3D Application
Research Group at ATI Research Inc. Michael J. Tatro (mike@stainlesssteelstudios.com)
is a software engineer at Stainless Steel Studios in Cambridge, Mass. Ian Bullard
(ianb@technologist.com) is a software engineer at New World Computing.

OO

Arguments

U sing the argument states, you can
direct input, such as interpolated

diffuse color or texel color, into the
texturing operations. Table 1 shows a
complete list.

Additionally, you can invert the argu-
ments or replicate their alpha channel
across the RGB channels. In the API,
you can bitwise OORR in the constants
DD33DDTTAA__CCOOMMPPLLEEMMEENNTT and DD33DDTTAA__AALLPPHHAARREEPPLLIICCAATTEE

with any of these render states to
achieve the desired effect. DD33DDTTAA__CCOOMMPPLLEEMMEENNTT
simply inverts each of the color chan-
nels, while DD33DDTTAA__AALLPPHHAARREEPPLLIICCAATTEE replicates
the alpha from the argument across the
R, G, and B channels. Naturally, the
DD33DDTTAA__AALLPPHHAARREEPPLLIICCAATTEE flag isn’t meaningful
if it’s used with DD33DDTTSSSS__AALLPPHHAAAARRGGx. Also,
DD33DDTTAA__CCUURRRREENNTT doesn’t make sense for the 0
texture operation unit because there is
no previous texture operation unit.

Operators

T he operators in each unit can oper-
ate on one or both of the corre-

sponding arguments. The operator ren-
der states can be set to any of the
values in Table 2.

This long list of operations may seem
a bit daunting at first, but with some

experimentation, the abstraction is
actually quite approachable. To get you
started with the model, the next section
illustrates some common multitexture
techniques and how they can be pro-
grammed in DirectX 6. We suggest that
you follow along with MulTex.

Each texture operation unit also has
states for texture addressing and filter-
ing associated with it. The application
programmer can set these render states
independently for each texture opera-
tion unit. A common example would
be to set the base texture of an object,
such as the brick texture in the follow-
ing dark mapping example (Figure 3),
to use DD33DDTTAADDDDRREESSSS__WWRRAAPP texture address-
ing, while the texture operation unit
for the dark map uses DD33DDTTAADDDDRREESSSS__CCLLAAMMPP.

Multitexture Examples

D ARK MAPPING. Naturally, our first
example of multiple texture map-

ping is the dark map described by Brian
Hook in the August 1997 issue of Game
Developer (“Multipass Rendering and
the Magic of Alpha Rendering”). Dark
mapping is commonly used in lieu of
vertex lighting, where one of the two
textures contains an unlit base texture
and the other contains a lighting tex-
ture (the dark map). Using the new
multiple texturing API, one might

implement this technique as
shown in Figure 2. In the figure,
the two large blue boxes represent
texture operation units, and the
red lines show the flow of data
through the pipeline. The first
texture operation unit merely
passes data from texture 0 to the
next stage. The second texture
operation unit receives these tex-
els via AArrgg22 and also fetches texels
from texture 1 via AArrgg11. The results
are modulated, giving the final
texel color as shown on the right-
hand side of Figure 3. Nothing
interesting is being done with the
alpha channel of the pipeline in

this case. Code (generated by MulTex)
for dark mapping is shown in Listing 1.
MODULATE2X. The preceding technique
is called dark mapping rather than light
mapping because the resulting texel
can only be a darker version of the unlit
texel from the primary map. For this
reason, some applications use a variant
of the modulate technique, where the
resulting texel is brightened by a factor
of two using the DD33DDTTOOPP__MMOODDUULLAATTEE22XX opera-
tion instead of DD33DDTTOOPP__MMOODDUULLAATTEE. (This can
also be done in two passes using the
alpha blending operation of Src*Dest +
Dest*Src.) One notable engine that uses
this technique is AnyChannel’s
AnyWorld engine, used in the upcom-
ing Postlinear/SegaSoft game, VIGILANCE

(Figure 4). The AnyWorld engine uses a
radiosity lighting model that requires
precomputed light maps from
LightScape, converted for use in the
engine. The advantage to using multi-
texture rendering in this case is that the
base texture maps can be tiled and
reused, while the light maps, which are
unique to each polygon and very low
resolution, are used with clamping.
This trades the high polygon count
associated with radiosity rendering for a
fairly large texture footprint.
SPECULAR HIGHLIGHTS AND ENVIRONMENT

MAPPING. In order to incorporate view-
dependent reflection of light sources
into the lighting model, a specular term

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

34

D I R E C T X S T U D Y

Stipple Test

Z-Buffer

Fetch Texels
from single
texture. Filler
to final
texel color.

Add Spectular

Texture Blend

Apply Fog

Alpha Blend

Write to
Frame Buffer

F I G U R E 1 . The Direct3D pixel pipeline.

F I G U R E 2 . This screenshot, taken from the

MulTex utility, shows two cascaded texture

operation units.

DD33DDTTAA__TTFFAACCTTOORR Take pixel data from API-level factor. This factor is set with

RREENNDDEERRSSTTAATTEE__TTEEXXTTUURREEFFAACCTTOORR.

DD33DDTTAA__DDIIFFFFUUSSEE Use interpolated diffuse color (Gouraud shading).

DD33DDTTAA__CCUURRRREENNTT Use color from previous texture operation unit.

DD33DDTTAA__TTEEXXTTUURREE Use color from texture associated with this unit.

TA B L E 1 . DirectX 6 texturing operations.

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 8 G A M E D E V E L O P E R

35

is added to the view-independent (dif-
fuse) term. In Direct3D, an application
can provide the renderer with specular
values at polygon vertices by passing
them in the vertex structures. The inter-
polated specular colors are then added
to the lighted texture color as shown in
Figure 1. The problem with this method
is that specular reflections tend to be
fairly localized on an object, and their
appearance can vary wildly depending
on the tessellation of the object in the
area of the specular reflection.
Theoretically, the peak brightness of a
traditional specular highlight can fall
within a polygon (as in, not at a ver-
tex), but this interpolation scheme
doesn’t reproduce such behavior. Figure
5A shows the artifacts caused by using
vertex specular lighting. These artifacts
are even more pronounced when the
object and/or viewer are in motion.

One solution to this problem is to
use a secondary texture as a specular
light map, as shown in Figure 5B. The
secondary texture coordinates of these
polygons are generated by projecting
into the light map (perhaps using a

hemispherical environment mapping
technique). The same effect, with a
full environment map, is shown in
Figure 5C. In Figures 5B and 5C, the
teapot is rendered using traditional
diffuse lighting at the vertices, which
is modulated with the primary (wood-
grain) texture. To this product, the
second blending unit adds the specu-
lar map. Direct3D multiple texturing
syntax is shown in Listing 2.
LINEAR BLENDING. Multitexturing also lets
you linearly blend between two textures
for morphing effects. You can use any of
the DD33DDTTOOPP__BBLLEENNDDxAALLPPHHAA operations, but
DD33DDTTOOPP__BBLLEENNDDFFAACCTTOORRAALLPPHHAA or DD33DDTTOOPP__BBLLEENNDDDDIIFF--
FFUUSSEEAALLPPHHAA are most efficient for frame-to-

frame variation of the linear blend fac-
tor. A good example of using a linear
blend for morphing is the ATI Knight
Demo, first shown at the CGDC in 1997
and illustrated in Figure 6. In this exam-
ple, the stone texture map on the
knight statue is the primary texture, and
the “living” texture map is secondary.
From frame to frame during the morph,
varying the blend factor causes the liv-
ing texture to fade in until it is the only
texture visible. For efficiency, before
and after the morph, traditional single
texture mapping is used with the appro-
priate texture (Figures 6A and 6D).
WHAT ABOUT PLAIN OLD DIFFUSE VERTEX LIGHT-
ING? As show in Figure 1, DirectX 6 has
rolled the whole texture blending
phase of the traditional pixel pipeline
into the multiple texture mapping
model. As a result, there is no separate
texture blending render state like the
one that existed in previous versions of
Direct3D. Instead, the program needs
to use a single texture operation unit to
perform common vertex lighting. In
order to use common vertex lighting
on a single texture, program texture
blending unit 0 as shown in Listing 2,
but disable texture blending unit 1.
OTHER TEXTURE OPERATIONS. What we’ve
illustrated here are techniques that are
likely to be of immediate use to devel-
opers, given the effects popular today
and the capabilities of available hard-
ware. Microsoft has provided illustra-
tions of a variety of multitexturing
effects and their multipass equivalents
in the DirectX 6 SDK, though some of
the single-pass versions of the tech-
niques may not be supported by cur-
rent or even next-generation hardware.
Of course, users of Direct3D applica-
tions are likely to have cards with vary-
ing coverage of multitexture features
(including no multitexturing features at
all). How can an application determine
the feature coverage of the hardware it
is running on and use the most optimal
multitexturing technique? Fortunately,

F I G U R E 3 . Dark mapping in action.

DD33DDTTOOPP__DDIISSAABBLLEE Disable this and any later texture operation units

DD33DDTTOOPP__SSEELLEECCTTAARRGG11 Pass argument 1 untouched

DD33DDTTOOPP__SSEELLEECCTTAARRGG22 Pass argument 2 untouched

DD33DDTTOOPP__MMOODDUULLAATTEE Multiply both arguments together

DD33DDTTOOPP__MMOODDUULLAATTEE22XX Multiply both arguments and shift 1 bit

DD33DDTTOOPP__MMOODDUULLAATTEE44XX Multiply both arguments and shift 2 bits

DD33DDTTOOPP__AADDDD Add Arguments together

DD33DDTTOOPP__AADDDDSSIIGGNNEEDD Add Arguments with -0.5 bias

DD33DDTTOOPP__AADDDDSSIIGGNNEEDD22XX Add Arguments with -0.5 bias and shift 1 bit

DD33DDTTOOPP__SSUUBBTTRRAACCTT Subtract AArrgg22 from AArrgg11, with no saturation

DD33DDTTOOPP__AADDDDSSMMOOOOTTHH Add arguments and subtract product

DD33DDTTOOPP__BBLLEENNDDDDIIFFFFUUSSEEAALLPPHHAA Blend arguments based on interpolated alpha

DD33DDTTOOPP__BBLLEENNDDTTEEXXTTUURREEAALLPPHHAA Blend arguments based on texture alpha

DD33DDTTOOPP__BBLLEENNDDFFAACCTTOORRAALLPPHHAA Blend arguments based on factor alpha

DD33DDTTOOPP__BBLLEENNDDTTEEXXTTUURREEAALLPPHHAAPPMM Linear alpha blend with premultiplied AArrgg11

AArrgg11 + AArrgg22*(1-Alpha)

DD33DDTTOOPP__BBLLEENNDDCCUURRRREENNTTAALLPPHHAA Blend arguments based on current alpha

DD33DDTTOOPP__PPRREEMMOODDUULLAATTEE Modulate with next texture before use

DD33DDTTOOPP__MMOODDUULLAATTEEAALLPPHHAA__AADDDDCCOOLLOORR AArrgg11.RGB + AArrgg11.A*AArrgg22.RGB

DD33DDTTOOPP__MMOODDUULLAATTEECCOOLLOORR__AADDDDAALLPPHHAA AArrgg11.RGB*AArrgg22.RGB + AArrgg11.A

DD33DDTTOOPP__MMOODDUULLAATTEEIINNVVAALLPPHHAA__AADDDDCCOOLLOORR (1-AArrgg11.A)*AArrgg22.RGB + AArrgg11.RGB

DD33DDTTOOPP__MMOODDUULLAATTEEIINNVVCCOOLLOORR__AADDDDAALLPPHHAA (1-AArrgg11.RGB)*AArrgg22.RGB + AArrgg11.A

DD33DDTTOOPP__BBUUMMPPEENNVVMMAAPP Per pixel environment map perturbation

DD33DDTTOOPP__BBUUMMPPEENNVVMMAAPPLLUUMMIINNAANNCCEE Environment map perturbation w/luminance channel

DD33DDTTOOPP__DDOOTTPPRROODDUUCCTT33 A per-pixel dot product that could be used for specifi-

cation of surface normal vector data in texture maps.

The result is (AArrgg11.R*AArrgg22.R + AArrgg11.G*AArrgg22.G +

AArrgg11.B*AArrgg22.B) where each component is scaled and

offset to make it signed.

TA B L E 2 . Operator render states.

the new API includes a means for vali-
dating the multitexturing techniques
an application will use. In the next sec-
tion, we cover this validation scheme as
well as an architecture for incorporat-
ing fallback techniques so that an appli-
cation will be able to take advantage of
multitexturing hardware when it’s
available and robustly fall back to mul-
tipass techniques when it isn’t.

The Reality of Hardware Support

Y ou’ll note that throughout this
article, we’ve consistently referred

to the new texture abstraction as just
that, an abstraction. The model, or
abstraction, that’s illustrated here and
documented in Microsoft’s DirectX 6
SDK doesn’t necessarily map directly to
the silicon designed by 3D video card
makers. In fact, in some cases, the sili-
con predates the API. Additionally, the
full feature set defined in the model
isn’t implemented on any 3D cards
available to date. As a result, program-
mers may initially find support of mul-
tiple texture mapping modes somewhat
sparse relative to the extreme flexibility
of the API. Microsoft has written a refer-
ence rasterizer for DirectX 6 that imple-

ments the full multiple texture map-
ping model; software developers can
use these to experiment with new
effects. Also under DirectX 6, the soft-
ware rasterizer (not the same as the ref-
erence rasterizer) has support for two
texture operation units and a reason-
able subset of the operations defined by
the API. MulTex can also serve as a tool
for experimenting with new tech-
niques. For the foreseeable future, we
recommend that developers plan to
implement both multipass and single-
pass versions of techniques in their
titles, where the multipass code is exe-
cuted when the application is running
on boards that cannot provide the
desired functionality in a single pass.

Typically, we expect developers to
define a set of materials that they will
use in their applications. These materi-
als are defined by the texture operation
units’ arguments and operations that
will be used when rendering a polygon
of that material type, as well as a few
other criteria, which we’ll touch on in
a moment. Each multitextured material
will have multiple ways that it can be
rendered: the ideal single-pass case, the
multipass fallback case, and any inter-
mediate cases. For example, a wall with
a static diffuse light map and a dynam-
ic light map might have three render-
ing methods (Table 3).

At application initialization time, the
3D application should run through its

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

36

D I R E C T X S T U D Y

F I G U R E 4 . The AnyWorld engine. The

walls and floor are tiled with smaller

textures while large light maps add

highly detailed lighting to the scene.

//// PPrrooggrraamm SSttaaggee 00::

llppDDeevv-->>SSeettTTeexxttuurree((00,, ppTTeexx00));;

llppDDeevv-->>SSeettTTeexxttuurreeSSttaaggeeSSttaattee((00,, DD33DDTTSSSS__CCOOLLOORRAARRGG11,, DD33DDTTAA__TTEEXXTTUURREE));;

llppDDeevv-->>SSeettTTeexxttuurreeSSttaaggeeSSttaattee((00,, DD33DDTTSSSS__CCOOLLOORROOPP,, DD33DDTTOOPP__SSEELLEECCTTAARRGG11));;

//// PPrrooggrraamm SSttaaggee 11::

llppDDeevv-->>SSeettTTeexxttuurree((11,, ppTTeexx11));;

llppDDeevv-->>SSeettTTeexxttuurreeSSttaaggeeSSttaattee((11,, DD33DDTTSSSS__CCOOLLOORRAARRGG11,, DD33DDTTAA__TTEEXXTTUURREE));;

llppDDeevv-->>SSeettTTeexxttuurreeSSttaaggeeSSttaattee((11,, DD33DDTTSSSS__CCOOLLOORRAARRGG22,, DD33DDTTAA__CCUURRRREENNTT));;

llppDDeevv-->>SSeettTTeexxttuurreeSSttaaggeeSSttaattee((11,, DD33DDTTSSSS__CCOOLLOORROOPP,, DD33DDTTOOPP__MMOODDUULLAATTEE));;

L I S T I N G 1 . Dark mapping. In this code snippet, unspecified render states are

left in their default states for brevity. In practice, an application should be more

defensive than this.

F I G U R E 5 . Vertex specular (A) versus specular mapping (B) and environment mapping (C).

//// PPrrooggrraamm SSttaaggee 00::

llppDDeevv-->>SSeettTTeexxttuurree((00,, ppTTeexx00));;

llppDDeevv-->>SSeettTTeexxttuurreeSSttaaggeeSSttaattee((00,, DD33DDTTSSSS__CCOOLLOORRAARRGG11,, DD33DDTTAA__TTEEXXTTUURREE));;

llppDDeevv-->>SSeettTTeexxttuurreeSSttaaggeeSSttaattee((00,, DD33DDTTSSSS__CCOOLLOORRAARRGG22,, DD33DDTTAA__DDIIFFFFUUSSEE));;

llppDDeevv-->>SSeettTTeexxttuurreeSSttaaggeeSSttaattee((00,, DD33DDTTSSSS__CCOOLLOORROOPP,, DD33DDTTOOPP__MMOODDUULLAATTEE));;

//// PPrrooggrraamm SSttaaggee 11::

llppDDeevv-->>SSeettTTeexxttuurree((11,, ppTTeexx11));;

llppDDeevv-->>SSeettTTeexxttuurreeSSttaaggeeSSttaattee((11,, DD33DDTTSSSS__CCOOLLOORRAARRGG11,, DD33DDTTAA__TTEEXXTTUURREE));;

llppDDeevv-->>SSeettTTeexxttuurreeSSttaaggeeSSttaattee((11,, DD33DDTTSSSS__CCOOLLOORRAARRGG22,, DD33DDTTAA__CCUURRRREENNTT));;

llppDDeevv-->>SSeettTTeexxttuurreeSSttaaggeeSSttaattee((11,, DD33DDTTSSSS__CCOOLLOORROOPP,, DD33DDTTOOPP__AADDDD));;

L I S T I N G 2 . Specular mapping as shown in Figures 5B and 5C.

materials to determine which render-
ing method it can use for each material
on the given hardware. The application
would program the texture operation
units for the top tier and validate this
set of states by calling the new func-
tion IIDDiirreecctt33DDDDeevviiccee33::::VVaalliiddaatteeDDeevviiccee(()). If

the function passes, the application
can use this tier when this material is
being rendered. If VVaalliiddaatteeDDeevviiccee(()) fails,
the application should keep moving
downward until a tier passes valida-
tion. When VVaalliiddaatteeDDeevviiccee(()) fails, it
returns an error code that indicates

why it failed; applications should be
prepared to handle this successfully.
The error codes are shown in Table 4.

These return codes are the additional
parameters that make up what we are
considering a material. For example, an
application that plans to use dark map-
ping techniques, sometimes using tri-
linear filtering and sometimes using
bilinear filtering, should consider each
of these cases separately and validate
accordingly. This distinction will prob-
ably become less critical in a year or
two, but with the first crop of multitex-
ture hardware, it’s very important to
pay attention to validation.

Chipsets with
Multiple Texture Support

A t press time, the ATI Rage Pro and
the 3Dfx Voodoo2 are the only

shipping cards with multitexture sup-
port. So developers already have access
to the first crop of available hardware.
For up-to-date information, DirectX 6
drivers, and a list of which texture
operations are supported, keep an eye
on the developer support material on
the ATI and 3Dfx web sites. ■

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 8 G A M E D E V E L O P E R

37

Top Tier Single-pass (Static Light Map + Dynamic Light Map) * Wall Texture

Bottom Tier Three-pass Frame buffer = Static Light Map

Alpha blend to get Frame buffer = Static Light Map + Dynamic Light Map

Alpha blend to get Frame buffer = (Static Light Map + Dynamic Light Map) * Wall Texture

TA B L E 3 . A three-tiered approach to multitexture rendering a wall with a static light map and a dynamic light map.

F I G U R E 6 . Four frames of the ATI Knight Demo from CGDC 97 showing a texture

morph using a linear blend factor. The camera is moving slightly during this

series of shots. The full .AVI is available from the Game Developer web site.

WRONGTEXTUREFORMAT The hardware cannot support the current

state in the selected texture format.

UNSUPPORTEDCOLOROPERATION The specified color operation is unsupported.

UNSUPPORTEDCOLORARG The specified color argument is unsupported.

UNSUPPORTEDALPHAOPERATION The specified alpha operation is unsupported.

UNSUPPORTEDALPHAARG The specified alpha argument is unsupported.

TOOMANYOPERATIONS The hardware can’t handle the specified num-

ber of operations.

CONFLICTINGTEXTUREFILTER The hardware can’t do both trilinear filtering

and multitexture at the same time.

UNSUPPORTEDFACTORVALUE The hardware can’t support DD33DDTTAA__TTFFAACCTTOORR

greater than 1.0.

TA B L E 4 . IIDDiirreecctt33DDDDeevviiccee33::::VVaalliiddaatteeDDeevviiccee(()) return codes.

3Dfx Inc.
http://www.3dfx.com

ATI Research Inc.
http://www.ati.com

AnyChannel’s AnyWorld engine
http://www.anychannel.com/

anyworld.html

FF OO RR FF UU RR TT HH EE RR II NN FF OO

Thanks to AnyChannel, John Pallett-

Plowright, and our colleagues at ATI for

their input.

Acknowledgements

Middle Tier Two-pass Frame buffer = Static Light Map + Dynamic Light Map

Alpha blend to get Wall Texture * Frame buffer

him (the shoes are a size too small). The game’s lead anima-
tor looks glum and keeps asking you to reshoot moves. He
can’t explain why, but what the talent is doing is “all
wrong.” The performer is perplexed and asks the animator
for feedback instead of talking to you, the director. Your lead
programmer, on the other hand, is happy with the talent’s
performance, glimpsing the action as she shuffles through
your shot list for the first time. In fact, she’s already asked
for ten additional variations, plus transitions for each move.
The studio manager informs you that you have an hour left
to shoot because the crew needs time to recalibrate the stu-
dio before they’re scheduled to go home at six o’clock. Just
then, your executive producer pops in to let you know that
the product manager is bringing in a photographer from a
game magazine. “Everything going all right?” he asks you.
“Good, because we’ve only got a few months to get that ani-
mation into the game.” It slowly dawns on you that maybe
some planning would have been a good idea.

Motion capture is an incredible technology that can be
used to create breathtaking game animation. Still, it’s a tool,
not a magical solution. Learn how to use motion capture
properly, and it can produce great results that will make
your life easier. Show up to your shoot without preparation,
and you’ll almost certainly waste time and money; worse,
you might not get any useable animation. If you’re a typical
game developer, you’re watching your budget closely and
guarding your schedule even more fiercely. In the long run,
planning your shoot and visualizing the end result is worth
the time spent up front.

Are you considering motion capture for your next game?
First, determine if it’s really right for your project. Motion
capture is most useful for 3D games with tons of character
animation. Consider the game engine, the style of anima-

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

38

C A P T U R EM O T I O N

Planning
A Motion
Capture Shoot

AY 1 OF YOUR MOTION CAPTURE SHOOT, 3:30PM. So

far, you’ve only captured four moves

on your list. The talent (who

arrived late because he didn’t have

directions to the studio) is complain-

ing that his sensored-up shoes are killing DD
b y M e l i a n t h e K i n e s

Melianthe Kines is a freelance interactive director and produc-
er. She has directed motion capture and Ultimatte shoots for
Acclaim Entertainment and Electronic Arts. Her past motion
capture projects include NBA JAM EXTREME, NBA JAM ‘99, THE

CROW: CITY OF ANGELS, and FIFA: ROAD TO WORLD CUP ‘98;
her Ultimatte production credits include WWF: IN YOUR

HOUSE and FRANK THOMAS BIG HURT BASEBALL. She can be
contacted via e-mail at mkines@escape.com.

tion you want, and of course, your budget and schedule.
You may want to combine motion capture data with
Ultimatte video elements and other types of animation.
Motion capture is by no means appropriate for every team
and every game; on the other hand, it’s hardly “Satan’s roto-
scope” or a threat to animators in any way. In fact, anima-
tors are critical to planning the shoot and then turning the
data into something useful and attractive.

In this article, I’ll explain how to plan the shoot; next
month, I’ll discuss how to direct the talent and run the
motion capture session. These are general guidelines for plan-
ning any use of motion capture for games, whatever the spe-
cific technical profile of the project may be. Your shoot will
have its own set of technical considerations, including the
game engine, programming and animation tools, and the
motion capture system to be used. I’ll be referring primarily
to optical motion capture, but the same ideas should apply to
other methods of motion capture production (magnetic or
tethered systems, for example).

If your team decides to use motion capture, someone will
have to take on the responsibility for organizing and produc-
ing that aspect of the project. I strongly recommend that
your team designate one person as “the director” — in other
words, the person in charge of the motion capture produc-
tion. The director may be the team’s producer, programmer,
or animator, or a freelance director with motion capture
experience. This individual bears the responsibility for mak-
ing the shoot a success and will have an overview of all pro-
ject issues related to motion capture. The director will be
coordinating information from the entire team, from the
game designer to the marketing manager. Whoever is in
charge must have a thorough understanding of the game
and enough time in his or her schedule to plan the shoot
properly. Ideally, this person should be able to communicate
clearly and diplomatically with the talent and all members
of the team.

Planning a motion capture shoot for a game is very dif-
ferent from planning a shoot for a film or any other linear
end product. What’s the difference? Your goal is to end up
with hundreds of individual moves that connect perfectly
to one another. If you’ve planned other kinds of game ani-
mation, you should already have a good understanding of
this process. Of course, in a motion capture project, the
actual creation of the data involves many additional con-
siderations. Full-motion video sequences, since they are
linear, should be handled separately from the in-game
character moves.

Starting Out: Reviewing the Animation List and Flowchart

I n order to begin planning your shoot, you need the game
specification, including an animation list and flowchart.

You’ll be working with the rest of the team to revise the ani-
mation list and flowchart, eventually coming up with a shot
list. Let’s look at the components in this revision process.
ANIMATION LIST. Take a look at the specification. Who are the
characters in the game? These characters should be defined
in the animation list, along with the moves that have been
planned so far. Has every character been accounted for? In

what environments will these characters be operating? With
what sorts of objects will they interact? Sports equipment
and weapons are obvious props that you’ll need, but don’t
forget about boxes, goal posts, ladders, keys, and so on.

Let’s say you’re producing an action game called
SUPERGUY. I’m going to keep this example fairly simple.
Table 1 lists some of the information that might be provided
in the SUPERGUY specification.
FLOWCHART. You should have a separate flowchart for each
character. There may be one in the specification, but often
you’ll have to create a flowchart that is more geared toward
planning motion capture (Figure 1). In fact, the process of
creating a flowchart is a great way to test the depth of the
animation list.

Look at your motion capture flowchart and see if the char-
acter can easily transition from each move to any other.
You’d do this no matter how the animation was being creat-
ed, but with motion capture, you can’t have an animator
create the missing move without a reshoot.
ADDING MOVES. The example animation list and flowchart
would lead to many questions. For example,
• Does the character have to stand up from a crouch before

he can walk or run?
• Does the character have to stop walking or running to

fight?
• If Superguy is hit hard enough to fall, is that all one move

(Fall) or is it be a combination of motions?
• If the character is walking, can he transition to a stop or to

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 8 G A M E D E V E L O P E R

39

GAME CHARACTERS IN SUPERGUY:
Superguy (user-controlled)

Evil Villainess

Big Bad Boss

Henchman Type A (small)

Henchman Type B (medium)

Henchman Type C (large)

SUPERGUY’S MOVES:
Stand (rest frame)

Walk

Run

Punch forward/right/left (from stand)

Kick forward/right/left (from stand)

Shoot forward/right/left (from stand)

Crouch

Punch forward/right/left (from crouch)

Kick forward/right/left (from crouch)

Shoot forward/right/left (from crouch)

Special Move #1

Special Move #2

Defend (from stand)

Get hit forward/right/left (from stand)

Get hit forward/right/left (from crouch)

Fall down (from stand)

Fall down (from crouch)

Lying down (not dead)

Get up (from fall to stand)

Dead

TA B L E 1 . Animation list for SUPERGUY example.

a run from either foot? Or does one
walk cycle have to be completed
before the transition?

• If the enemy characters are different
sizes, where do the punch and kick
attacks connect on each of them?

• Do each of the enemy attacks (which
would be listed on those characters’
move lists) cause the same Get hit

reaction on Superguy?
• Does Superguy have a gun at all

times, or does he pick it up or pull it
from a holster?

• What are the parameters for the “spe-
cial moves?”

The answers to these questions
depend on the game’s engine and
design. Some animation blending
tools will handle transitions, so you
don’t have to capture transition
moves. While it’s generally safer to
capture more data than you need, nat-
urally you don’t want to spend extra
time and money shooting totally
superfluous moves.

Review the list with the designer and
producer to see whether additional
moves are required to improve game
play. Does the player’s character have
all moves necessary to confront or

avoid danger and enemies? Can the
character reasonably travel through
every area of the game’s environment?
While this is a design issue and, there-
fore, the designer and producer’s
responsibility, it’s up to you, the direc-
tor, to avoid additional motion capture
shoots late in the production schedule.

You’ll most likely have to add some
transitions to any animation list. For
this example, we’ll say that your team
has some great blending tools, but
you’re going to change the following
animations because you need realistic
human motion for the transitions:

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

40

M O T I O N C A P T U R E

Dead

Lie
Down

Walk

Punch F
from S

Kick F
from S

Shoot F
from S

Get hit F
from S

Punch F
from C

Kick F
from C

Shoot F
from C

Get hit F
from C

Punch R
from S

Kick R
from S

Shoot R
from S

Get hit R
from S

Punch R
from C

Kick R
from C

Shoot R
from C

Get hit R
from C

Punch L
from S

Kick L
from S

Shoot L
from S

Get hit L
from S

Crouch

Stand

Get up
to S

Fall
from S

Punch L
from C

Kick L
from C Fall

from C

Shoot L
from C

Get hit L
from C

Crouch

Stand

Special
Move #1

Special
Move #2

Defend
from S

Run

F I G U R E 1 . SUPERGUY’s move flowchart (F = forward, R = right, L = left, S = stand, C = crouch).

Walk to run (starting with left foot)

Walk to run (starting with right foot)

Run to walk (starting with left foot)

Run to walk (starting with right foot)

Crouch to walk

Crouch to run

Get hit from stand (forward/right/left) high

Get hit from stand (forward/right/left) low

Fall down (from stand) forwards

Fall down (from stand) backwards

Fall down (from crouch) forwards

Fall down (from crouch) backwards

Once you’ve reviewed and amended
the animation lists and flowcharts for
each character, you can start planning
the shot list. You’ll also need an esti-
mated frame count for each move.
Work closely with the animation team
that’s going to reduce the motion data
to the target size so you understand
their procedures. No human being can
throw a punch in precisely fifteen
frames, but you can determine a rela-
tive timing strategy.

Creating a Shot List

S o far, an animation list for
motion capture seems similar to

that for any other type of character
animation. Defining the shot list,
however, is where you will account for
how to shoot the moves in a motion
capture studio.
CREATE A DATABASE. It’s helpful to use a
database program, such as File Maker
Pro, to organize the motion capture
information. You can generate a shot
list from the database, and later you
and the other team members will be
able to produce customized lists neces-
sary for post-production. You should
have separate fields for character
names, talent, move names, move
descriptions, file names, frame counts,
size of capture space, props, and special
set-ups (Table 2). Also, note whether
the animation is looping or transition-
al. Any move that repeats is a loop —
standing, crouching, or walking, for
example. Any move that has a defined
start and finish is a transition — a
punch, a fall, or a special move. List
the starting and ending positions for
all transition moves.
FILE NAMES. Establish file naming con-
ventions with your team early in the
process. This makes sorting the data
easier and will allow you to name
additional moves later in the process.

Why bother with conventions? Moves
are almost always added to the shot
list as the team reviews it. You’ll likely
throw in extra shots when you’re in
the studio, whether due to a brilliant
inspiration or a moment of paranoia.
Allowing for last-minute decisions
doesn’t mean you haven’t planned
carefully — if you’re prepared with a
logical naming and reference system
in advance.

For example, you could use the fol-
lowing format for the Superguy file
names:
SGSA001A: SG (Superguy) S (standing)

A (attack) 001 (punch forward) A
(version)

EVWT001A: EV (Evil Villainess) W
(walking) T (transition) 001 (to run,
left foot) A (version)

HBCL001A: HB (Henchman B) C
(crouching) L (loop) 001 (crouching)
A (version)

PRELIMINARY SHOT LIST. Your preliminary
shot list should have as much informa-
tion as possible. I’ve created an exam-
ple of a shot list for Superguy (Table 3).
Don’t worry about the sequence in
which the moves are listed; later on,
you’ll be arranging them in the order
in which you plan to shoot them.

All key team members should thor-
oughly review and agree upon the
completed shot list. Although you’ll
provide detailed written descriptions
of each move, on their own these
descriptions can still be subject to
interpretation. To clarify, create story-
boards that everyone can examine.
Videotape someone acting out the
moves, even if that person isn’t the
actual talent for the shoot. You should
also have an appendix to the shot list
with agreed-upon scene and prop mea-
surements that correspond to the
game environment.

Also include approved sketches of
the game characters in costume.
Anything that’s flowing, such as long
hair or a coat or a cape, is going to
need special attention from both the
animators and the studio personnel.
You may be able to create a special
motion capture costume or prop to
track the motion of tricky costume ele-
ments. Do a test shoot to see if it
works properly.

Too often, team members individu-
ally approve a written shot list with-
out realizing that each of them still
imagines the moves in a different way.

These discrepancies may only become
apparent the day of the shoot or
worse, afterwards, when team mem-
bers see the moves for the first time.
Naturally, these people have other
responsibilities and may not want to
give the shot list their full attention
during the planning stage. It’s up to
the director to hold meetings and dis-
cuss the moves in detail. Emphasize to
the team members that their partici-
pation in these sessions will save
everyone a great deal of work and
frustration later on.

Planning the FMV Shoot

U sually, the production of full-
motion video sequences (cut

scenes) is left until the last stages of
the game's development. Therefore,
there’s a tendency to put off the plan-
ning for the FMV shoot until the last
minute. That’s a shame, because you
can create incredible FMV sequences
with motion capture. You may be able
to capture more detailed motion data
for an FMV sequence because the
whole thing will be prerendered and
won’t be competing for memory with
other game elements.

The specification should provide
information about all cinematic
sequences needed for the game. You
should have final voice-over scripts
and detailed storyboards, including
camera cuts, in order to create separate
shot lists for FMV production.

The timing of these sequences will
probably be closer to real time, and
you’ll have to match any planned
voice-over dialogue. Depending on the
type of motion capture studio you’re

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 8 G A M E D E V E L O P E R

41

Character name

Talent name

File name

Move name

Move description

Frame count

Loop or transition

Start position

End position

Size of capture space

Props

Special set-ups

TA B L E 2 . What to include in your

motion capture shot list.

using, you may also be able to capture
the moves of two or more people at
once (for example, you can do amazing
fight sequences). When casting your
talent, remember that these scenes also
tend to require more acting ability
than the in-game moves.

Getting Ready for the Shoot

W HEN TO SHOOT. At what point in
the development cycle should

you start shooting? Of course, your
specification, animation list, and shot
list must be completed and approved
first. But don’t let the schedule slip. As
soon as you’ve compiled the informa-
tion for your shot list and your talent is
available, do a test shoot. Then start
shooting, since months of post-produc-
tion will be needed to get the moves
into the game. Roughly, in a 14-month
development cycle, principal shooting
should take place from months 4
through 8, with pickup shoots possible
in later months.

Try to split up your principal
motion capture production into a min-
imum of two sessions spaced several
weeks apart. Before the second shoot
takes place, the team should have a
chance to process most of the data
from the first shoot and test it in the
game. You’ll want to have the team’s
in-depth feedback on the first shoot’s
results before you go back into the stu-
dio, so you can learn from any mis-
takes, as well as reshoot them. You
may have other concerns about the
way the first shoot went: maybe the
talent was awful and has to be
replaced; maybe the rig that you had
the studio build didn’t work the way
that you intended; or perhaps a prop
broke and you need time to have it
repaired. Besides, a break in shooting
will allow the talent and the team
(including you) to re-energize and get
a fresh perspective on the project.
FIND A STUDIO. You should make tenta-
tive reservations for the studio as far in
advance as possible, whether you’re
using your company’s motion capture

studio or booking time at an out-of-
house facility. If you’re not sure where
to find a studio, try to get recommen-
dations from colleagues in the game
business. The Web has some resources,
as well; for example, the SIGGRAPH
site has motion capture information,
and most studios have their own sites.
Some of the better known optical
motion capture studios available to
game developers are House of Moves in
Venice, Calif.; BioVision in San
Francisco; and Acclaim Entertain-
ment’s studio in New York.

When you book time for your princi-
pal shooting, arrange for a test shoot,
too. Hold this session as soon as you
can — it should only take a day or two.
If your talent isn’t available or hasn’t
been chosen yet, get someone else
who’s reasonably capable to perform
the moves. (Doesn’t your assistant
have a secret desire to wear that black
lycra suit?) Make sure that the same
team members that will attend the
“real” shoot are present at the test
shoot. You want their participation, of

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

42

M O T I O N C A P T U R E

File Name Character/ Move Name Start End Loop Fr Ct Props/Special Description
Cap. Space

SGSL001A Superguy Standing loop — — Y 6 N Standing, arms at sides. Rock side to

SMALL (rest frame) side slightly, looking tough. No gun.

SGWL001A Superguy Walk — — Y 10 N Walk cycle, left foot first.

SMALL

SGRL001A Superguy Run — — Y 15 N Run cycle, left foot first.

LARGE

SGWT001A Superguy Walk to run W R N 5 N Transition from walk to run, start on

LARGE (starting with left foot) left foot and end on right.

SGWT002A Superguy Walk to run W R N 5 N Transition from walk to run, start on

LARGE (starting with right foot) right foot and end on left.

SGRT001A Superguy Run to walk R W N 5 N Transition from run to walk, start on

LARGE (starting with left foot) left foot and end on right.

SGRT002A Superguy Run to walk R W N 5 N Transition from run to walk, start on

LARGE (starting with right foot) right foot and end on left.

SGSA001A Superguy Punch forward S S N 15 N Throws quick jab forward from

SMALL (from stand) standing position.

SGSA002A Superguy Punch right S S N 15 N Throws right cross to right from

SMALL (from stand) standing position.

SGSA003A Superguy Punch left S S N 15 N Throws upper-cut to left from

SMALL (from stand) standing position.

SGSA004A Superguy Kick forward S S N 15 N Streetfighting style kick forward from

SMALL (from stand) standing.

SGSA005A Superguy Kick right S S N 15 N Karate kick to right from standing.

SMALL (from stand)

SGSA006A Superguy Kick left S S N 15 N Knee to opponent’s stomach to left

SMALL (from stand) from standing.

SGSA013A Superguy Shoot forward S S N 15 Gun Pull out revolver and shoot once

SMALL (from stand) forward. Replace gun.

TA B L E 3 . Sample entries for SUPERGUY’s shot list.

course; but there’s another reason to
include them. You can set up proce-
dures for communication and establish
your role as the director. You’ll direct
the talent, call action and cut, and run
the session while responding to the
team’s feedback.

Casting

O nce you’ve figured out what
moves you need to shoot for the

project, you’ll need some extraordi-
nary performers that can fluidly and
accurately play your game characters.
Assuming you’ve decided not to hire
celebrity talent, it’s time to hunt
down some “motion specialists” as tal-
ent for the shoot.
NONCELEBRITY TALENT. For an action
game, stunt men and women are an
excellent choice. (If you’re planning to
use a stunt coordinator, he or she
should be able to bring in people for
auditions.) Experienced stunt perform-
ers know how to throw a punch, hit
their marks, fall on a mat, and repeat
the whole thing over and over exactly

the same way. Martial artists and gym-
nasts are other possibilities for fighting
games. Check your local clubs and
academies. Does your game have a
medieval or sword-fighting theme?
Contact fencing teams and performers
from Renaissance fairs. For sports tal-
ent, try local colleges and training cen-
ters with a good reputation in your
sport. If you can afford it, look into
the possibility of hiring athletes from
minor league teams.

Hold auditions and record them on
video (this will help you get all neces-
sary approvals on casting decisions
later). Look for performers who move
fluidly and have no unwanted idiosyn-
crasies in their motion (such as a bad
knee). Motion capture technology will
very accurately reflect any unusual
human movement, and this will seem
magnified in a game where the same
ten frames are repeated often. For
example, if you motion capture some-
one with a bad knee, the character may
appear to limp when running. You
should also make sure that the per-
former has roughly the same propor-
tions as the game character. Height and

frame are more important than weight
because the actor’s “skeleton” (mea-
sured by the distance between joints)
will be used to calculate the character’s
motion. Discuss these issues with the
animators, the motion capture studio
manager, and the team that will
acquire the motion data.

Another important casting consider-
ation is the performer’s attitude. Tell
the prospective talent the bad news up
front: body-clinging motion capture
suit, unwieldy sensored props, repeti-
tive moves, the need to hit precise rest
frames and marks, and so on. In
exchange for these somewhat bizarre
conditions, plan to pay your perform-
ers fairly and treat them like royalty.
Make sure that you choose people who
are not only enthusiastic, but also
intelligent enough to understand what
they’re getting into. They should also
have flexible schedules and be available
for pickup shoots later on. And of
course, you should always have addi-
tional choices available as backup.

Remember that you can cast one per-
son to play several characters. For our
imaginary SUPERGUY shoot, I’d probably

43

cast three performers: a medium-build
man as Superguy and Medium
Henchman, a bigger guy as Big Bad Boss
and Large Henchman, and a medium-
build woman as Evil Villainess and
Small Henchman. Also, find out from
your technical team if motion from one
performer can be applied to characters
played primarily by other people.
CELEBRITY TALENT. One of the most com-
mon perceptions of motion capture
hell is that of a shoot with a prima
donna celebrity who couldn’t care less
about your silly little videogame. After
suffering through an agonizing and
embarrassing capture session, the data
turns out to be useless. Don’t let this
happen to you. Your first step should
be to make sure that the performer is
right for your project, regardless of
whether he or she is a famous athlete
that your marketing department is hot
to sign up.

Obviously, the marketing and public
relations value that a star performer
brings to your project is a major consid-
eration. But there really are other con-
crete advantages; after all, celebrities are
famous for a reason. Professional ath-
letes will astound you with their abili-
ties when you get them in the studio.
They’re fast, strong, and know their
sport inside and out. Sure, you might

get lucky and find an amazing local
athlete for your shoot. But it’s extreme-
ly unlikely that an amateur will ever
match the sheer talent of a celebrity
player. Think about it — these athletes
wouldn’t have made it to the big
leagues without incredible natural abili-
ty, and on top of that, they train and
play the game every day. The same idea
applies to nonsports projects; for exam-
ple, a celebrity actor would bring his or
her own unique abilities to the shoot.
Remember that motion capture will
accurately represent the physical man-
nerisms of the performer, so your audi-
ence will recognize the moves of some-
one famous. (For example, check out
the motion-captured Michael Jackson
in his video directed by Stan Winston.)
If you’re creating a game based on a fea-
ture film, consider using the star’s stunt
double as talent for your shoot.

Still, there’s no point hiring a
celebrity if his or her abilities aren’t
appropriate for your game. Ideally, you
would give a short list of acceptable
celebrity performers for your project to
whomever is going to arrange the deal.
You can’t bring these people in for
auditions, but you can study footage of
them doing the kind of motion you
need (such as basketball or fighting). If
the talent is going to play more than

one game character, try to choose
someone who can perform generic
moves in addition to those of his or
her own distinctive style. (Would you
want to end up with a basketball
videogame where every character — on
every team — plays like Patrick Ewing?)

Before any contracts are signed, pro-
vide the talent’s agent with a clear
explanation of what the talent will
have to do — the same “bad news” you
would tell noncelebrity performers. If
possible, send a copy of the shot list
and a videotape of past motion capture
shoots, plus exciting videogame
footage showing the kind of results for
which you’re aiming.

Preparing a Shooting Schedule

O RGANIZE THE SHOT LIST. Before you can
schedule your session properly,

you should put the shot list in the order
in which you plan to shoot — logically
and efficiently. Group the shots by tal-
ent, size of capture space to be set up,
special set-ups (such as stunt rigs), and
the logical progression of your moves.
Simply put, establish your rest frame
positions and loops before capturing
moves that branch off from those posi-
tions (Table 4).

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

44

M O T I O N C A P T U R E

DAY 1: Small Capture Space
Rehearsal

SGSL001A Stand (rest frame)

SGWL001A Walk

SGSA001A Punch forward (from stand)

SGSA002A Punch right (from stand)

SGSA003A Punch left (from stand)

SGSA004A Kick forward (from stand)

SGSA005A Kick right (from stand)

SGSA006A Kick left (from stand)

SGCL004A Crouch

SGCT001A Crouch to walk

SGCA001A Punch forward (from crouch)

SGCA002A Punch right (from crouch)

SGCA003A Punch left (from crouch)

SGCA004A Kick forward (from crouch)

SGCA005A Kick right (from crouch)

SGCA006A Kick left (from crouch)

SGSA007A Shoot forward (from stand)

SGSA008A Shoot right (from stand)

SGSA009A Shoot left (from stand)

SGCA007A Shoot forward (from crouch)

SGCA008A Shoot right (from crouch)

SGCA009A Shoot left (from crouch)

Day 2: Small Capture Space
Rehearsal

SGSD005A Defend (from stand)

SGSD001A Get hit forward (from stand)

high

SGSD002A Get hit right (from stand) high

SGSD003A Get hit left (from stand) high

SGSD004A Get hit forward (from stand)

low

SGSD005A Get hit right (from stand) low

SGSD006A Get hit left (from stand) low

SGCD001A Get hit forward (from crouch)

SGCD002A Get hit right (from crouch)

SGCD003A Get hit left (from crouch)

SGLLOO1A Lying down (not dead)

SGLT001A Get up from fall to stand

SGXL007A Dead

Leave time for idle moves/improvisation

Day 3: Large Capture Space
Rehearsal

SGRL001A Run

SGWT001A Walk to run (starting with left

foot)

SGWT002A Walk to run (starting with right

foot)

SGRT001A Run to walk (starting with left

foot)

SGRT002A Run to walk (starting with

right foot)

SGCT002A Crouch to run

Stunt Coordinator: Mats & Stunt Rig

SGST001A Fall down (from stand)

forwards

SGST002A Fall down (from crouch)

forwards

SGST001A Fall down (from stand) back

SGST002A Fall down (from crouch)back

SGZA001A Special Move #1

SGZA002A Special Move #2

TA B L E 4 . Sample schedule for SUPERGUY shoot (main character).

Try not to schedule all of the boring
moves together. If you need to shoot
an entire series of simple transitions
(and they don’t require special props
or rigs), place a few at a time through-
out the shot list. If you group them
together and spend over an hour hav-
ing the performer act like a robot,
you’re likely to lose any momentum
you’ve built up in the shoot. On the
other hand, every now and then, the
talent will be glad to have some easy
moves — especially after some particu-
larly difficult sequences.
DAILY SCHEDULE. Talk to the motion cap-
ture studio manager about the studio’s
scheduling procedures. For how many
hours a day can you shoot? How much
time does the crew need to prepare and
wrap the studio? How long should you
break for lunch, and who will order it?
Is overtime a possibility? Usually, a
good day's schedule consists of approx-
imately six hours of capture time.
Longer sessions may wear your talent
out too early in the shoot, and won't
allow reasonable time for the crew to
prepare and wrap the studio.
DO YOU NEED A REHEARSAL DAY? Some peo-
ple bring in the talent a day or a week
before the shoot to run through the
moves. You may be surprised, but I
don’t believe in rehearsing the per-
former ahead of time. I’ve found that
it’s best simply to schedule some re-
hearsal time at the beginning of each
shoot day, or even to do a quick re-
hearsal before each move. Of course,
it’s still important to send a copy of the
shot list to performers a few weeks
before the shoot so they know what to
expect and can make their own prepa-
rations, if they like.

Once you’ve figured out the sched-
ule, don’t keep it to yourself. Explain it
to the team and distribute a detailed
copy to all involved. It’s also a good
idea to write up “call sheets” for each
day, indicating the time that you plan
to start and finish shooting, as well as
what talent, what type of moves, and
which props and special set-ups are
required (Table 5). A call sheet allows
the motion capture studio manager
and crew to have everything you’ll
need standing by (make sure all props
are created in advance and have been
approved by the studio, as well as the
team). Your goal is to have as little
down-time between set-ups as possible.
Delays not only cost you studio time,

they chip away at that all-important
momentum that you’ve built up.
Maintaining a steady pace in the shoot
keeps everyone at their best.

Take Care of Your Performer

Imentioned before that you should
treat the talent — celebrities or not

— like royalty. Make sure that you’ve
accounted for the talent’s schedule,
breaks needed, meal requirements, and
transportation to and from the shoot.
Make sure you have the proper size
information for the talent’s motion
capture suit and footwear, and ask the
talent what type of shoes he or she
prefers. If the performer has a broken-
in pair he or she doesn’t mind selling
you for the shoot, get those shoes in
advance so the studio can prepare
them for motion capture.

Assign the talent a gofer for the
shoot day; remember that the talent
may feel imprisoned in a motion cap-
ture suit. You certainly don’t want him
or her to try taking the suit off in the
middle of the day — you’d have to
recalibrate before continuing.

If the talent lives far away, arrange
for a hotel room close to the studio. It
doesn’t have to be the Four Seasons,
but make sure the performer can get a
good meal, a proper shower, and a
comfortable night’s sleep. Arrange a car
or limousine service for pick up every
morning (from home or a hotel) and
return every night. You’ll have a better
chance of getting the performer there
on time and less pressure to send him

or her home at a certain hour. Have the
meals, drinks, and snacks that he or
she prefers; but if the talent tells you
that morning about a craving for
Chinese food, just order it. It will be
money well spent.

In other words, spoil performers
and provide for almost their every
need. Why? It will make them feel
special and they’ll like you better (that
may sound trite, but it really does
help). If the performer isn’t worried
about being hungry or how to get
home, there’s a better chance that his
or her full attention will be on the
shoot. But a more important benefit is
that you, the director, will have more
control over the session. Fewer sur-
prise requests and delays equals a
more productive shoot.

Maintaining control over the produc-
tion process is the name of the game.
You’ll see how your brilliant planning
can pay off when it’s time to run the
session and direct the shoot. I’ll discuss
that next month in “Directing Motion
Capture for Games.” ■

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 8 G A M E D E V E L O P E R

45

Day # Of Date Project Director Crew call
3 12 4/27/98 SUPERGUY Melianthe Kines 9:00AM

CAPTURE SPACE Small SPECIAL NOTES Lunch delivered 1:00PM

Move Description Shot Numbers Props Rigging/Special
Rehearsal

Run SGRL001A

Walk/Run/Crouch transitions SGWT001A-2A

SGRT001A-2A

SGCT002A

Falls forward SGST002A- SGCT002A Mats/Box

Falls backward SGST003A- SGCT003A Mats/Box

Special moves SGZA001A- SGZA002A Flying Rig/Mats

Talent Character Suit/Scale On Set Remarks
Manny Macho Superguy 9:30AM 10:00AM Needs trainer

TA B L E 5 . Sample call sheet for SUPERGUY shoot.

Acclaim Entertainment
http://www.acclaim.net/

BioVision
http://www.biovision.com/

House of Moves
http://www.moves.com/

SIGGRAPH
http://www.siggraph.org/

FF OO RR FF UU RR TT HH EE RR II NN FF OO

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 8 G A M E D E V E L O P E R

51

P R O D U C T R E V I E W

and technology become available. Much
of the excitement around this idea is
being generated by Microsoft’s forth-
coming DirectMusic technology.

However, there is a chance that
DirectMusic might not be the great
panacea that it’s touted to be, and bet-
ting a development project on largely
untested technology is unwise. When
DirectMusic ships, will it deliver on its
great promise? If this technology
doesn’t live up to the hype (you can
read more about it Tom Hays’ article
on page 20), don’t forget that there are
other audio engines with proven track
records. In this review, I look at two of
them: the Miles Sound System 4.0
(MSS) and the Headspace Audio Engine
1.0 (HAE).

Both of these engines are mature,
have been used in an incredibly diverse
collection of products, and were built

by programmers who have listened to
user feedback and have maintained an
interest in keeping their products vital
and relevant. That said, each product
comes with its own set of particular
strengths and weaknesses, and I’ll
explain those as I go along.

I approached this review as a com-
poser and sound designer working in
games — I’m not a programmer. So my
perspective of these products is from
the standpoint of someone who creates
content to be submitted to the systems.
As such, I’m in a position to judge the
quality of the audio produced by these
engines. However, as these are both
fundamentally programmers’ tools, I
teamed up with a game programmer
who put together some demo applica-
tions, analyzed the documentation,
and generally gave me a feel for work-
ing within these environments.

The Miles Sound System 4.0

J ohn Miles introduced the Miles
Sound System in 1991 and RAD

Game Tools now distributes and sup-
ports it. The MSS technology is every-
where; RAD claims that over 800 games
have shipped using the MSS, and even
DirectSound uses MSS technology, as
the DirectSound audio mixer was
licensed from RAD. What this means is
that the technology has been beaten
on and abused by huge numbers of
programmers, and the tech support
people have heard nearly every kind of
problem imaginable.

In MSS 4.0, RAD provides the pro-
grammer with a consistent, easy-to-use,
and functionally transparent front end
for sound and music programming.
MSS provides a consolidated interface
for just about everything you could

Dueling
Audio Engines

b y A n d r e w B o y d

nteractive music is a hot-button item for game audio these days. It

could well be the most important development in game soundtracks

since, well, games began having soundtracks. The promise is that the

soundtrack will be as responsive to the player’s actions as the visuals or

the game play, and more immersive than linear music could ever be.

The potential impact on the gaming experience is enormous, to say the

least. But so is the potential impact on game development, as new toolsII
Andrew Boyd has been creating sound for games since 1993. He now runs Audible Images, a music and sound design house in San
Francisco, Calif. He can be reached at andrew@audibleimages.com.

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

52

P R O D U C T R E V I E W

want to do with digital audio, MIDI,
and Red Book sound formats. It con-
tains a set of prebuilt authoring tools as
well as functions for creating custom
tools. Not only that, MSS further
reduces the complexity barrier by
including the Quick Integration
Services, which provides basic sound
playback functionality with almost no
programming work at all (startup, load
and play, unload, and shutdown calls
are all that is necessary to get going).
It’s not particularly feature laden, but it
doesn’t get much easier. Additionally,
RAD ships the full MSS source code
along with the API, which is a very nice
touch. Most important to my purposes
here, though, is that MSS now includes
a full-featured software synthesizer
based around the MIDI Manufacturers
Association’s DLS standard, the same
kind of synthesizer that DirectMusic
will use.
AUTHORING CONTENT FOR MSS. In its most
basic form, you can just hand MSS a
.WAV file and play it with amazing sim-
plicity. Similarly, you can create a Red
Book format audio CD, and MSS can
start playing that, too. In fact, MSS can
handle existing content with no prob-
lem at all and, in fact, can do some very
interesting things with it. For instance,
playing multiple sounds simultaneous-
ly is easy, and MSS handles all resam-
pling chores for you at run time, should
your sounds happen to be in different
resolutions. But to take advantage of
the sophisticated features of the MSS
software synthesizer, you need to pro-
vide your content in some unique for-
mats. The most important formats are

the downloadable
sound (DLS) collec-
tions used by the
software synthesizer.

MSS doesn’t provide any tools for cre-
ating the DLS collection files needed to
feed the software synthesizer (though
RAD is considering it for future ver-
sions). Currently, the most commonly
used tool is the one released by the
MIDI Manufacturers Association when
they put out the final DLS specification.
I didn’t have a chance to look at that
tool for this review, but I understand
it’s hardly the kind of mainstream
application that will be on every musi-
cian’s computer. In any event, RAD’s
implicit assumption seems to be that
because DLS is an open standard being
rapidly adapted by the industry, it
shouldn’t be too hard to find good
tools to make DLS content in the near
future. I think this is a perfectly reason-
able assumption — we’re not quite
there yet, though. For my tests, I used a
shareware product called Awave 4.5
(available at http://hem.passagen.se/
fmj/fmjsoft.html), which did a fine job
of editing DLS content. In fact, it can
actually read directly from MSS format
files, compressed or uncompressed, and
RAD speaks well of it as a companion to
their software synthesizer.

The tools that MSS provides aren’t
pretty or particularly easy to use, nor
do they feel as polished as Headspace’s
Beatnik Editor. Nonetheless, the Miles
Sound Studio, the Miles Sound Player,
and MIDI Echo have some powerful
features. The Sound Studio is a conve-
nient, consolidated set of tools for

compressing, decompressing, convert-
ing between, and generating informa-
tion about many of the various file for-
mats that MSS uses. With Sound
Studio, you convert standard MIDI to
XMIDI, merge XMIDI and DLS files,
compress DLS instruments, and com-
press .WAVs or convert them to .RAWs.
You can strip DLS collections back out
of merged files, or generate a list of all
the DLS parameters in a collection.

One great tool is the “Filter DLS with
MIDI” function that analyzes a selected
DLS collection against a MIDI file (or
files) and throws out all instruments not
actually used in that file or files. This
can provide a huge savings in file size,
especially if you’re using the Microsoft’s
General MIDI set. Combined with the
fact that the instrument sound data can
be ADPCM (Adaptive Differential Pulse
Code Modulation) compressed, some
very small files are possible indeed. This
ADPCM compression can also be done
in the Sound Studio and applied to any
.WAV file or DLS collection.

The Sound Player application is a
very simple, straightforward program
that does just what its name implies.
It’s convenient because it allows you to
load different DLS collections, com-
pressed or uncompressed, and play
sequences with them. It also allows you
to turn reverb and antialias filtering on
and off, and switch between mono and
stereo; 16-bit and 8-bit; and 11KHz,
22KHz, and 44KHz rendering, all while
a song is playing back. It monitors

Headspace’s Beatnik Editor

The Miles Sound Studio

processor usage during all this, too, so
you can see very clearly the resource
hits that the various options take.

MIDI Echo is the least visually attrac-
tive of the tools as it’s a console appli-
cation — it runs in a DOS box and uses
character graphics to display informa-
tion. On the other hand, it provides
functionality that can be very useful.
MIDI Echo lets you audition the soft-
ware synthesizer from a MIDI controller
or pipe a sequencer directly through
the software synthesizer, so you can
make changes before going through all
the conversion processes necessary to
prepare a file for final delivery.
Unfortunately, I was unable to use this
tool to any real extent because of the
way my Turtle Beach sound card is set
up. Apparently, MIDI Echo tries to allo-
cate some sound card resources that the
Turtle Beach card doesn’t allow to be
allocated all at once. Be forewarned: if
you use a Turtle Beach card in your
sound development machine and you
want to run this tool, you’ll probably
want get a Sound Blaster to go along
with it. (Turtle Beach says the problem
can be worked around by adjusting the
card’s IRQ settings.)

The complete set of MSS tools is
available from the RAD web site, along
with some nice sample music files and
a demo showing the system’s ability to
play and stream audio and play its soft-
ware synthesizer. It’s worth a look.
SUPPORT AND DOCUMENTATION. The MSS
documentation is vast, thorough, and
meticulously detailed. It gets out of
your way and tells you what you need
to know quickly and concisely. The
tools’ documentation could be more
engaging, perhaps, because the users of
the tools are less likely the bedraggled
programmer than the sound designer;
still, the information you need is there.

Technical support is one of RAD’s
real strengths. The company is
extremely helpful, responsive, friendly,
and accessible. When I called to
inquire about MIDI Echo’s resource
allocation problem, I was put right
through to a person with specific
knowledge of my problem. Though the
problem yet remains, I’m now confi-
dent that the fault lies with the Turtle
Beach sound card, not the software.

By the time you read this, RAD
should be shipping a new release of
MSS. The new version adds native sup-
port for MPEG Layer-3 compressed

audio, a new effects architecture that
can apply effects such as reverberation
and chorus to all audio, and more.

The Headspace Audio Engine

HAE began life in 1991 as a way to
play standard MIDI files on a

Macintosh by creating a wavetable syn-
thesizer entirely in software. The resolu-
tion was poor, the playback was limit-
ed, but it worked. Soon its author, Steve
Hales, had grown it into a product
called SoundMusicSys, which could
handle all of a game’s sound implemen-
tation. SoundMusicSys was marketed
under a couple of different brands and
was used in a number of very successful
games. After the tool went through sev-
eral revisions and was ported to
Windows and some set-top boxes,
Headspace bought and renamed it. HAE
now forms the technological underpin-
nings of Headspace’s various products.

HAE is a unified, full-featured syn-
thesis, sampling, and streaming audio
environment that runs entirely in soft-
ware and with support for multiple
platforms. Its software synthesizer is
somewhat more sophisticated than the
DLS synthesizers in MSS or
DirectMusic, especially in terms of
modulation and effects parameters,
and it defaults to 64 available voices.
Because of its cross-platform heritage,
it supports a large number of file for-

mats. It also uses very robust filtering
mechanisms to create very high overall
output quality, even when doing wide
pitch bending or other forms of drastic
resampling (which, of course, it can do
on the fly at run time).

The Headspace Audio Engine’s API is
very deep and flexible, but is also rather
complex. It has a different feel than
MSS — for instance, when you want to
stream a file from disk, you must start a
thread in your application to service
the stream very often to keep its buffers
from under-running; MSS will, by
default, handle all of that service for
you. (Of course, MSS allows the default
to be overridden in order give control
over to the application.) The difference
is in the approach to development.
Both products provide very powerful
toolsets, but HAE is more focused on
raw flexibility than simplicity of imple-
mentation. Many programmers will
find this approach acceptable, even
preferable, because it places the onus
on the programmer to code the low-
level sections of the audio system. To
give you an indication of its depth,
HAE provides functions to stream audio
from any source — and the source
doesn’t have to be an audio file. You
can generate sound-like data from any-
where, and it will generate its own
MIDI information from these triggers.
AUTHORING CONTENT FOR HAE. HAE can
work with a wide variety of standard
sound formats, including .WAV, .AIFF,

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 8 G A M E D E V E L O P E R

53

Comparative file format support.

Miles Sound System 4.0 Headspace Audio
Engine 1.0

Audio Formats .WAV, .RAW, .VOC, native

support for IMA ADPCM

compression

.WAV, .AIFF, .AU, .MOD,

and Sound Designer II in

Beatnik Editor

Software Synthesizer DLS-1 compatible, per-

voice low-pass filter,

global synthesizer rever-

beration

Proprietary wavetable/

sample playback synthe-

sizer, resonant filter,

reverberation

MIDI Formats Standard MIDI, XMIDI Standard MIDI, RMF,

Direct MIDI Messages

Mixing Features Run-time resolution-inde-

pendent mixing of

streamed or triggered

sounds, with volume,

pan/balance, and pitch

Run-time resolution-inde-

pendent mixing of

streamed, triggered, or

generated sounds, with

volume, pan/balance,

pitch, and reverberation

.AU, MIDI, and .MOD files. The support
for .MOD files is intriguing, because in
some ways the .MOD file is the grand-
daddy of this current round of software
synthesis. While .MOD is much more
popular in Europe than in the U.S.,
there is nevertheless an amazing
amount of content out there in .MOD
format. It is apparently difficult to
author content for, however, and
Headspace doesn’t provide any .MOD
authoring tools. Still, this discrepancy is
an indication of HAE’s cross-platform
roots. HAE also has its own proprietary
format, .RMF (Rich Music Format), and
you can author .RMF files using a free-
standing application called the Beatnik
Editor (see “The Beatnik System”).
SUPPORT AND DOCUMENTATION. The HAE
documentation is extensive and very
thorough, and it comes as a conve-
niently indexed .PDF file. The docu-
mentation’s tone, however, is a bit
breezy. I guess it’s cute for a bit, but it
does get tiresome — and I know more
than a few programmers who would be
seriously unamused by reading the lit-
tle side jokes while looking for some
feature’s documentation (at 3:00AM…
the day before final…).

I received courteous and thoughtful
technical support, and Headspace’s
support personnel did fix the problem I
brought to them. But my first e-mailed
request for support went unanswered
until I followed up with a phone call.
As with MSS, if you need programming
support, you can actually talk to the
author of the system, and that certain-
ly inspires confidence and usually gets
quick, correct answers.

Sound Quality

I have little to say about the sound
quality of either system’s straight

digital audio or Red Book playback.
MSS and HAE can just pipe out the
audio exactly as it sounded when it
went in. Their mixers also do a fine job
of combining multiple sounds without
creating audible artifacts (neither has
an intrinsic limit to the number of
sounds it can play, but each provides a
function to limit voices so as to not
overtax the hardware). Once you begin
to alter sounds, though, differences
appear. Both systems can take sounds
of different sample rates simultaneous-
ly and resample them on the fly to into

one stream, but HAE was capable of
slightly better sounding output. In one
simple but revealing test, I switched
the output rate of the playback engine
between 22KHz and 44KHz while lis-
tening to different combinations of
three streams — one at 22KHz, one at
32KHz, and one at 44KHz. This forced
the systems to perform different
degrees of simultaneous up- or down-
sampling of the streams in order to mix
them together. I also compared the
output of the up- and downsampled
files against a reference file resampled
offline using Sound Forge. With identi-
cal source files, the two systems pro-
duced slightly different audible results.

HAE’s upsampling sounded especial-
ly impressive — smooth and fairly nat-
ural — but it came with a processor hit
of an additional two to three percent
per stream (naturally, it takes more
processor time to render a 44KHz out-
put stream than a 22KHz stream). HAE
downsampled the 44KHz to 22KHz
quite well, and with little or no addi-
tional processing time; the resultant
sound was somewhat duller than the
reference downsampled file, but was
otherwise artifact-free. The 32KHz file
didn’t downsample all that well,
sounding soft and muddy, but perfor-
mance remained consistent. MSS had
more trouble with the upsampling,

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

54

P R O D U C T R E V I E W

H eadspace, as a company,

has credibility to spare

when it comes to the games

industry. Steve Hales, HAE’s

architect and the author of

SoundMusicSys before it, has been

involved with audio for games for a long

time. His technology has appeared in

some major games, such as LEMMINGS,

HEXEN, a couple of WING COMMANDERs,

SIMCITY 2000, and more. Plus, soundtracks

composed and designed by Headspace’s

creative types have been featured in high-

profile games such as CYBERIA and

OBSIDIAN. So why is HAE not on the tip of

every game developer’s tongue? Because

the company currently is focusing its pro-

motional and evangelical efforts on the

Internet community. The Beatnik System

consists of a web browser plug-in, an edi-

tor application, and a set of web-based

resources for users. Headspace is making

good progress in the web industry, which

could draw some focus away from the

games side of its business. However, the

company claims to remain committed to

the games industry, saying it does have

some big game development clients using

its technology, and that it’s interested in

working with more developers. Also,

because the whole Beatnik System is built

on HAE technology, there are some happy

side effects for game sound development.

One of these is the Beatnik Editor.

The Beatnik Editor is Headspace’s pro-

prietary tool for creating .RMF documents.

It’s a MIDI processor, a wavetable cre-

ation device, a real-time controller, a com-

pressor, and an encryption tool wrapped

up in a fairly musician-friendly package.

Because it’s aimed at a much more gener-

al audience than just hardcore develop-

ers, the Beatnik Editor has the look and

feel of a mainstream application. As of

this writing, it’s available as a beta

release, and only as a Macintosh applica-

tion. On the plus side, it’s free, and it’s

useful for both HAE and Beatnik-specific

content. Headspace says it’s working on a

Windows version of the Beatnik Editor,

but the company isn’t ready to announce a

release date for it yet. It has released a

Windows product called the Beatnik

Converter, but it’s a comparatively simple

format converter, not a complete produc-

tion tool like the Beatnik Editor.

The Beatnik Editor is fairly easy to use.

You load in sound files (in Sound Designer

II, .WAV, .AIFF, or .AU format) and turn

them into instruments. The editor pro-

vides a very useable graphical interface

for defining keymaps, envelope, filter,

pan, and so forth. You can audition these

instruments from the onscreen keyboard

or link to your sequencer and play them

directly from a sequence. You can create a

bank of these user instruments to go

along with the supplied General MIDI

bank, and you can also copy instruments

from the GM bank, edit them, and save

them in the user bank. You can then load

in standard MIDI files that call these

instruments and save the whole thing out

as a compressed .RMF file suitable for use

inside HAE or with the Beatnik plug-in on

any web page. If you only use instruments

from the GM bank, the resulting file is

very small, as the GM bank is always resi-

dent in the playback systems.

The Beatnik System

generally adding just a bit of buzz to
high-frequency content. This was very
slight in most cases, but audible in an
exposed sound — in a mix, it was
much less noticeable. The process
incurred no noticeable performance
hit. Downsampling was fine with MSS;
the 44KHz to 22KHz downsample
sounded a little less dull than the same
process performed in HAE, but still rea-
sonably smooth. The 32KHz to 22KHz
process was actually superior in MSS,
but still didn’t sound too good.

While both audio engines can apply a
reverberation effect to audio streams
during playback from their software
synthesizers, don’t expect much in
terms of sound quality. Processing
something as complex as reverberation
in real time on a PC, without using up
all available resources, is just too much
to ask. Of the two products, HAE has an
edge in quality, with a decay that at
least hides the individual echoes — a
small consolation. Both produce gritty
and artificial sound, with a metallic
quality that’s not at all pleasant and
really does little to provide any kind of
space around sounds. However, in some
cases, it’s better than nothing; it’s awful-
ly nice to have a reverberation option if
you need it. For example, because you
can make completely custom sounds,
it’s possible to create your most impor-
tant instruments (or even vocals) as
loops, phrases, or hits with high-quality
reverberation during recording, then
create all the other instruments from
the wavetable to save space. Applying
global reverberation at playback will
help to mix all these elements much
more satisfactorily. Check out the demo
song SUPER.MSS on the RAD web site
for an example of this process. Using
the Miles Player application, turn rever-
beration on and off and listen to the
way the mix works. If you have a DLS
editor, you can even pull the file apart
and look at how the vocals were created.

Both audio engines can also compress
sound files and synthesizer samples
using IMA ADPCM compression. This
provides a four-to-one compression of
16-bit sounds with surprisingly little
loss of audio quality. Still, compression
does cause some audible artifacts — a
certain grittiness and noisiness added to
the sound. However, in most cases, I
suspect the impressive size savings will
make the compression worthwhile,
especially inside MSS where the com-

pression provides savings both in stor-
age and in RAM requirements. HAE also
offers a proprietary lossless compression
for synthesizer samples that results in
about a 20 percent size reduction.

Performance and Resource Use

I did some rough performance moni-
toring of these products using

Windows 95’s supplied System
Monitor application for processor
usage. These tests were run in Windows
95 on an Intel Pentium 200MMX with
64MB RAM, Turtle Beach Pinnacle
sound hardware (driver version 4.03),
and the DirectX 6 beta.

This is the part of my article that
sound designers will want to keep away
from the programmers doing the tech-
nical implementation of their game.
Here’s a fact: software synthesis, run-
time mixing, audio decompression,
musical interactivity, and many of the
other tools that these systems offer to
make a sound designer or composer
happy absolutely devour system
resources. Think 20 to 30 percent
processor usage on my test machine for
what seemed to me a reasonable combi-
nation of software synthesis and sound
playback. Granted, my test system is a
low-end target machine for games
beginning development now, and pre-
sumably a faster machine would report
commensurately lower resource usage.

It wasn’t difficult to get MSS to con-
sume 40 percent of the test machine’s
processor cycles consistently by simul-
taneously playing the software synthe-
sizer (using a sequence averaging
around 16 voices and reverberation, fil-
tering, and 16/44/stereo rendering all
on), triggering sounds out of RAM, and
streaming sound from disk. When
playing multiple streams along with an
.RMF file, the HAE exhibited somewhat
less predictable performance, jumping
from as little as 20 percent to peaks as
high as 50 percent of resource usage,
but stayed in about the same range as
MSS. The ability to handle all of this
simultaneously opens up some won-
derful sound design possibilities, but
we know that performance will always
be an issue with games, so tradeoffs
will still have to be made.

While both audio engines can com-
press the sounds that will be used in
the software synthesizers, MSS has a bit

of an advantage in that you don’t have
to decompress sounds before playing
them. MSS decompresses directly in its
mixer (the last stage before the sound
is sent out to hardware), so it can use as
little as one fourth the RAM required in
uncompressed form. Interestingly, this
takes essentially no performance hit
during playback, because while it
requires two to three times as many
cycles to perform the decompression,
there are one fourth as many samples
to process. It’s almost like getting the
RAM for free — you just have to be
willing to put up with a small degrada-
tion in audio quality.

Do You Need These Systems?

A t the moment, each of these sys-
tems offers a killer-app feature:

the software synthesizer. However,
once DirectMusic ships, with its sup-
port for a DLS software synthesizer,
complete tool set, and its low, low
price (free), will HAE and MSS still mat-
ter? I think they will, because they pro-
vide much more than just the synthe-
sizer. MSS offers a very solid,
easy-to-use API layer that can save a
great deal of time and hassle, and RAD
is committed to adding features to stay
current. Frankly, it’s conceivable that
the MPEG Layer-3 playback in the
forthcoming version will be reason
enough to license the whole package.
HAE provides a level of cross-platform
capability with which, obviously, the
Microsoft product will not even try to
compete. And at least for now,
Headspace has an edge in the author-
ing tools with its Beatnik Editor.

The reality is that while neither MSS
nor HAE is free — and DirectMusic is
sure to cause RAD and Headspace some
headaches and sleepless nights about
that issue alone — they are also proven,
known products. When it comes time
to consider an audio platform for a
game, it would be irresponsible not to
take that into account. Both products
have been around for so long that gen-
erations of games have come and gone
during their lifetimes — in fact, the
very concept of what game audio
should be has evolved a long way. In
the meantime, both products have
grown into extremely powerful, robust
tools for supporting audio content.

There is a lot to like about the

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 8 G A M E D E V E L O P E R

55

Headspace Audio Engine, and if your
project could use its impressive cross-
platform capabilities, or if, say, your
sound designer already has a great deal
of content prepared for the Beatnik sys-
tem, then it could prove an excellent
choice. It certainly does everything it
claims to do, and it produces high-qual-

ity audio. But without considering the
needs of a specific project, if I were to
recommend one of these systems for PC
game development, I’d have to go with
the Miles Sound System. Version 4.0 is
an excellent system — robust, stable,
and easy to use. It has the tools and fea-
tures necessary to build an interactive

audio system of any complexity and it
supports industry standard formats. If
the next version really incorporates all
the features RAD is promising (and
since they previewed it at the CGDC
last May, I have little doubt that it will),
it should prove to be a powerhouse of
an audio platform for PC gaming. ■

56

P R O D U C T R E V I E W

Rating (out of five stars): ✪✪✪✪

Headspace
San Mateo, Calif.
(650) 696-9400
http://www.headspace.com

Software Requirements: The audio SDK supports Windows
95/NT with DirectSound, and MacOS.

Price: $5,000 per shipped title per platform. Embedded version
or source license negotiable.

Pros:
1. Incredible cross-platform support.
2. A well developed and easy-to-use authoring tool.
3. Excellent sound quality.
Cons:
1. Proprietary format for software synthesizer.
2. Authoring system available only for MacOS.
3. More expensive to license.

Headspace Audio Engine 1.0
Rating (out of five stars): ✪✪✪✪

RAD Game Tools
Kirkland, Wash.
(425) 893-4300
http://www.radgametools.com

Software Requirements: The audio SDK supports Windows
95/NT/3.x, Win32s, and DOS.

Prices: $3,000 per shipped title (source code included). Various
site-license options available.

Pros:
1. Clean and elegant API.
2. Industry standard DLS software synthesizer.
3. Run-time decompression of IMA ADPCM compressed sounds.
Cons:
1. Lacks a dedicated or integrated authoring tool.
2. Supports Intel-based systems only.
3. Tools’ interfaces need polishing.

Miles Sound System 4.0

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

46
BA SHOOTOUT 98, a simulation/arcade

basketball game for the PlayStation, was

developed by Sony Interactive Studios

America (now known as 989 Studios).

989 Studios, in cooperation with Sony

Computer Entertainment America, pro-

duces the majority of the sports titles that are available for the

PlayStation today. When Game Developer magazine approached me to

write this article, I wasn’t sure how an audio

guy such as myself could stay true to the

guidelines of a Postmortem, seeing that it’s

usually written by game programmers and

producers. Only after input from a reader

b y C h u c k C a r r

NN
989 StudioÕs
NBA SHOOTOUT 98:
Sounds of Victory

P O S T M O R T E M

Chuck Carr is a composer/sound designer/audio engineer at 989 Studios in San Diego, Calif. (formerly Sony
Interactive Studios America). He has been in the audio industry for 13 years and the gaming industry for 5
years. He can be reached at gdmag@mfi.com.

47

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 8 G A M E D E V E L O P E R

focus group held by the mag-
azine at last spring’s CGDC
did I get some answers to
that question.

First, let me start by
telling you a little about the
game itself. Chris Cutliff,
NBA SHOOTOUT 98’S produc-
er, describes the game as, “a
simulation/arcade basket-
ball game intended for all
skill levels, from the novice
to the advanced game play-
er.” The game uses licenses
from the NBA for teams,
players, uniforms, and
logos. With such an incredi-
ble license, the audio team’s
goal was to create NBA-qual-
ity sound to complement
this popular title.

A Tough Act to Follow

N BA SHOOTOUT 98’s pre-
decessor, NBA

SHOOTOUT 97, was a great
game that did very well.
When development of
SHOOTOUT 98 began, our San
Diego, Calif.-based audio
team (consisting of Rex Baca, Joel Copen, and myself) was
relatively new. Rex had been at 989 Studios from the
beginning (when we were known as Sony Imagesoft), Joel
for about nine months, and I for about four months. Rex
created sound effects and produced the voice work talent
for SHOOTOUT 98 (which was voiced by Mike Carlucci, who
also contributed his talents to NFL GAMEDAY 98, MLB 98,
and MLB 99). Joel wrote four of the in-game music pieces.
My job was to compose the front-end song and sound
effects (the front end is the point in the game where you
choose your options and preferences before game play
begins), compose one in-game tune, and like Rex, create
sound effects such as exaggerated net swishes, bouncing
basketballs, squeaking shoes on a court, and so on. In addi-
tion, all three of us had the grueling task of regionalizing
hours of voice work.

Early on, we had to make some important decisions about
the audio. We decided to go with a contemporary hip-
hop/R&B music style for the in-game music. The in-game
music consisted of six songs, which were played during the
introduction movie and at various stages throughout the
game. The songs were in Red Book audio format. Finally, we
decided to rerecord the sound effects from SHOOTOUT 97 and
add some incredible 3D stereo samples into the mix, such as
ambient room basketball bounces and shoe squeaks. We
knew what kinds of sounds we were looking to get before we
started recording and discovered some great audio nuggets
such as shoe stomps, grunts, and springy basketball rims
after listening to the finished recording.

Working with the audio for the play-by-play announcer in
SHOOTOUT 98 was especially challenging. As I stated earlier,
Mike Carlucci was used to introduce players, announce sta-
dium names, call the game as it’s played, and so on. Our
plans called for his commentary to be streamed as .XA audio
from the CD during game play. As with most sports titles,
this meant that many hours of voice work had to be region-
alized and organized.

The process of regionalizing the audio was an arduous
task. During a few five-to-six hour sessions at Studio West
in San Diego, we recorded Carlucci reading a script of player
names, game calls, and in-game commentary onto a DAT
(Digital Audio Tape) cassette. The development team mem-
bers wrote the script, with additional editing help from Rex.
We then dumped (recorded) these recordings into a com-
puter in real time, including all of the mistakes, ad-libbing,
and empty space between phrases. Keep in mind, these files
are sometimes hours in length; at a rate of 16-bits and
44.1KHz, they can consume gigabytes of disk space.
Regionalizing is the process of selecting only the desired

The NBA SHOOTOUT 98 development team, including several of the game’s audio designers.

Left to right: Scott Murray, Chris Cutliff, Geoff Goldberg, Algon Leighton, Mike Bolger, John

Settles, Joel Copen, Rex Baca, Fred Shic, and Andre Booriakin.

989 Studios
San Diego, Calif.
(619) 824-5511
http://www.989studios.com/

Team Size: 8 (11 including audio team)
Time in development: 9 months

NBA SHOOTOUT 98

player name, game call, or phrase of
audio, while making sure no extra
space is selected before or after the
selected audio (thereby creating
regions). Keeping your region selec-
tions tight, without extra space, helps
keep file sizes smaller, thereby leaving
more space on your game CD. These
regions are then saved as individual
sound files, which are then saved in
the appropriate format and used in the
game accordingly.

Our Audio Gear

A s far as audio gear is concerned,
we had everything we needed to

get started. We employed a Crown
SASS MK-II microphone, a Sony C-70
shotgun microphone, and a Sony TCD-
D10 Pro II portable DAT machine to

record sound effects, which I’ll discuss
later. We used both PC and Macintosh
platforms to process and edit the
audio. Our core tools included
Digidesign’s Pro Tools 4.1, Sonic
Foundry’s Sound Forge 4.0d,
Digidesign’s Sound Designer 2.82,
Syntrillium Software’s Cool Edit Pro
1.1, Cakewalk 6.01, and Opcode’s
Studio Vision Pro 3.5.

Sound Forge 4.0d, which I believe is
the best software of its kind on the
planet, was my workhorse tool for
sound effects editing. It has very useful
and functional features for the audio
professional, tremendous third-party
support, and so far, all product
upgrades have been easy to attain via
Sonic Foundry’s web site, free of charge.

Cakewalk 6.01, which I’ve been
using since the first Windows version,
was the tool I used to compose my
music. With version 7.0 out now, it’s
more of powerhouse than before,
although it still has one huge draw-
back: no .AVI or QuickTime support for
importing videos. This support is
essential for scoring music and sound
effects to video. I talked with Greg
Hendershott of Cakewalk at last May’s
CGDC about this problem, and he said
that this feature would be implement-
ed in a future upgrade.

I used the awesome noise reduction
feature in Cool Edit Pro 1.1 for cleaning
up audio, as well as some of the cool
effects algorithms for tweaking some
front-end sounds. Pro Tools 4.1, Sound
Designer 2.82, and Studio Vision Pro
3.5 were used on the Macintoshes.

Things That Went Right

1.A LARGE ALLOTMENT OF RAM DEDICATED

TO AUDIO. With PlayStation games,
the trick is to fit songs and sound
effects into the PlayStation’s 512K of
sound RAM. Usually, one doesn’t have
the luxury of having all 512K to work
with; you may have to share that RAM
with another sound designer’s sound
effects or music, or some of the sound
RAM may be allotted for sound effects
that will be streamed off the CD. But
front-end programmer Fred Shic let me
have it all, so I alone was in charge of
how we’d use the full 512K.

I decided to take full advantage of
the space by creating short stereo 3D
sound effects. The particular kind of

3D sounds that I implemented
weren’t achieved by using a 3D sound
API or surround sound decoder; I’m
talking about simple binaural audio.
Binaural audio doesn’t require any
encoding or decoding at all. All that’s
required for playback are left and
right channels, and all you need to
create the sounds is the appropriate
microphone (in our case, the Crown
SASS MK-II). Although binaural audio
has some limitations when compared
to using an API or decoder, it works
exceptionally well for ambient envi-
ronmental sounds and one-shot
sound effects.

2.RECORDING OUR OWN SOUNDS. Using
sounds from a sound library is

sometimes your only choice;
Nonetheless, when the situation pre-
sents itself, recording your own
sounds is often the most rewarding
experience. In the case of NBA
SHOOTOUT 98, we rented a local gym-
nasium for two hours to record our
assistant producer and his brother
playing basketball. We used the
Crown SASS MK-II stereo ambient
microphone to record the big 3D
sounds, the Sony C-70 shotgun micro-
phone for close-up in-game sounds,
and the Sony TCD-D10 Pro II portable
DAT machine to record it all. Using
the assistant producer as our recording
talent had several great advantages.
We realized some cost savings by
using our own team members for this
recording session, and it was fairly
easy to schedule. Our assistant pro-
ducer knew the sounds that we were
looking for, which later helped take
some of the guess work out of choos-
ing which sounds to use. It may seem
easy to choose which sounds to use in
a basketball game (and most times it is
fairly easy), but having the assistant
producer with us as our recording tal-
ent helped him remember what source
material we had to work with later.

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

48

P O S T M O R T E M

The author recording sounds of the

wild with the Crown SASS MK-II

microphone and a Sony TCD-D10 Pro

II portable DAT machine. (Photo by

Dominic Perricone.)

3.SUCCESS WITH NOISE REDUCTION TOOLS.
How many times have you

recorded what you thought was some
great audio footage and had it ruined
by too much room noise? That used to
a big concern for me (and, to some
extent, I still worry about it), but
thanks to some of today’s newer audio
software, recording in noisy situations
has become a little less troublesome.
For instance, while in the gym I
noticed a low tone coming from the
ventilation system, which kicked on
and off periodically. One time while it
was on I recorded the hum by itself,
making sure that the talent didn’t
make any noise. We then went about
recording our effects. Later in the stu-
dio, I used the noise reduction feature
in Cool Edit Pro 1.1 to remove the
noise from the usable effects. With
very little tweaking of parameter set-
tings, the noise was all but gone from
the source material.

4.WORKING CLOSELY WITH PROGRAM-
MERS. Even before creating the

first sound effect for the front-end
sections of the game, I met with the
front-end programmer, Fred Shic.
Fred was responsible for programming
the opening menu screens, including
assigning sound effects to the various
PlayStation controller button actions.
We discussed the sound needs and
began to formulate ideas about what
sounds were required for each button-
action. As I created sounds, I would
fire them off to Fred over the network
so he could plug them into the game
and test them. I would send him
these sounds a couple of times per
week. His feedback helped me deter-
mine the correct length for sounds
attached to any given screen action,
and his careful accounting of sound
RAM let me choose the optimal sam-
ple rate for each sound. This close
communication really helped us make
the best use of the available sound
RAM, and also ensured the highest-
quality audio and shortest load times
possible. I realize that some develop-
ment teams don’t have the luxury of
this kind of a close working relation-
ship — many use third-party develop-
ers or have programmers who stay
locked up in their rooms most of the
time — but it certainly made a big
difference in our case.

5.THE YAMAHA 03D DIGITAL MIXER. I’ll
let you in on a little secret. Using

the Yamaha 03D digital mixer is a joy
I never felt before until I used it to
mix my songs in NBA SHOOTOUT 98.
About a month before the project
began, I ordered the 03D and started
to work with it. I had heard a lot of
great things about the 03D, and I can
attest to its quality. I mixed every
track entirely in the digital domain,
complete with digital dynamics,
effects, and equalization. Using
Cakewalk Pro Audio as my multitrack
software, I was able to use software
plug-ins on all sixteen tracks in real
time, automate the 03D via MIDI dur-
ing mixdown, and save all of the dif-
ferent mixes for later changes. Top
this off with the desk space and
money I saved by not using any out-
board gear whatsoever. Simply put, I
love new, functional technology.

What Went Wrong

1.POOR COMMUNICATION. In the begin-
ning of the NBA SHOOTOUT 98

sound development process, the
desired feel of the music as explained
by the development team wasn’t exact-
ly clear. As songs were written and pre-
sented to the team though, the consen-
sus seemed to be that the music was
headed in the right direction. But as
the beta date approached, opinions
about some of the songs changed; it
began to look as though some of the
tunes weren’t going to cut it.

Consequently, we set up a meeting
with the producer to discuss the sec-
tions of some of the songs that needed
changing. In the meeting, we discov-
ered that some of the development
team members who had initially voiced
dissatisfaction with the songs did so
mostly because they thought that the
majority of the team didn’t like the
music. As it turned out, there was less
dissatisfaction with the music than we
had initially thought. So we went back
and fixed the parts of the songs that
didn’t work and were able to deliver the
goods. I now know how important it is
to really get to know the development
team and producers as you work on a
title. My experience has shown me that
good communication will often result
from close relationships.

2.CROSS-PLATFORM DIFFICULTIES. I’d
really like to have an easy

method of exchanging and manipulat-

ing standard audio files on both the
PC and Macintosh platforms. For
instance, let’s say you convert a .WAV
file to an .AIF file and save it to a fold-
er on a network drive. You’d think
that a Macintosh would be able to rec-
ognize it, right? (After all, that’s the
main purpose of the conversion in the
first place.) However, that was simply
not the case in our experience with
NBA SHOOTOUT 98. The Macintoshes
wouldn’t recognize the .AIF files that
we’d already converted and saved on
the PC. We had to reconvert hundreds
of files to .AIF format on a Macintosh.
The reason is that Sound Forge and
other PC audio programs don’t embed
into their audio files the contextual
information that the Macintosh needs
to identify these files. (For the record, I
don’t have a problem reading Macin-
tosh files from the PC.) Thankfully,
Sonic Foundry has a little utility pro-
gram for the Macintosh called AIF
Typer (available at Sonic Foundry’s
web site). You simply drag .AIF files
onto the AIF Typer icon on the
Macintosh desktop, and the utility
does the rest. Another way to make the
Macintosh recognize a PC .AIF file is to

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 8 G A M E D E V E L O P E R

49

Extracting a noise profile with

Syntrillium Software’s Cool Edit Pro

1.1. The designer will use the high-

lighted section to remove the back-

ground noise from the file.

edit the file creator information with a
utility such as ResEdit or SetItsType,
but I don’t wish this chore on anyone.
With AIF Typer, I can now send files
back and forth between the Macintosh
and PC with little heartache.

3.OUT WITH THE OLD, IN WITH THE NEW.
The PlayStation’s native file for-

mat for audio effects is called a .VAG.
Collections of .VAGs are organized into
what is known as a .VAB using an
application developed by Sony called
Sound Delicatessen. A .VAB also holds
the instructions for how the individual
.VAGs are played back in a game (for
example, volume, panning, tuning,
effects depth, envelope parameters,
and so on). Early in our development
process, we used the old .VAB from
NBA SHOOTOUT 97 as a placeholder for
the programmer. As development pro-
ceeded, we created a new .VAB that
contained new sounds.

Then one day I went to Fred Shic’s
office to hear the latest sounds in the
game. For some reason, the game was
emitting some of my new front-end
sounds along with some of the old
sounds from the old .VAB. Fred
assured me that this problem would
be fixed.

As time went by and the beta date
drew near, I completed the final ver-
sion of the .VAB and handed it off to
Fred. When I heard the latest CD burn
of the game, some of the old front-end
sounds were still being played. After
some troubleshooting, we discovered
that the new .VAB was in place, but
that the old placeholder code was still
calling the old .VAB. Fortunately, this
was an easy fix. The error was com-
pletely understandable considering
the programmer’s workload at the
time, but still, during a game’s devel-
opment process, it’s a good idea to
review the latest revisions of the game
and make sure the audio is being
implemented properly.

4.NOT RELYING ON AN UNINTER-
RUPTABLE POWER SUPPLY

(UPS). Picture this scene: I’m
working out one of my last
tracks — the drums are
groovin’, my bass is pumpin’,
and I’m feeling that this is
going to be a great track for the
game. On top of that, I’m
ahead of schedule. Suddenly, I
notice some audio stuttering in
the playback. I don’t think it’s
a big deal, but just in case, I
check to see if I’m running out
of space on my hard drive. Sure
enough, I notice I have only
2.4MB of space left, and, just in time, I
switch the recording over to a drive
with plenty of capacity. Once again, I’m
feeling pretty smug and continue com-
posing. Suddenly, the power goes out.

I sit in a moment of blackness won-
dering if I saved my work. I didn’t. I
now use a UPS. I highly recommend
you use one, too.

5.NOT USING THE LATEST SOFTWARE.
When we were first deciding on

a format in which to create our
game’s songs, we looked at MIDI, Red
Book audio, .XA audio, and looped
.VAGs. I knew that I had to use my
Macintosh to compose these songs, as
my Nu-Bus Sound Artist audio card
was only available for the Macintosh
at the time. The Sound Artist card is
used to play back .VAGs as MIDI
instruments and sound effects on a
computer. I used Opcode’s Studio
Vision Pro and Open Music System
for the sequencing. The Sound Artist
card is compatible with Open Music
System, which makes the computer
believe that the Sound Artist card is
really a MIDI instrument. Once your
.VAGs are loaded into the Sound
Artist, you can start sequencing — or
at least that’s what I thought. I could
trigger the sounds in the Sound Artist
card using my Kurzweil K2000, but
there was a considerable lag between
triggering the sounds and their play-
back. After many hours of pain and
anguish trying to solve this problem,
I finally realized that my version of
Sound Delicatessen was outdated. A
simple upgrade fixed the problem.
Lesson learned: don’t forget to double
check that you’re using the latest ver-
sion of your tools, lest you run into
problems and/or forego the benefits
of new features.

More Audio

A ll in all, NBA SHOOTOUT 98 was a
fun project. Our audio team has

formed great relationships with other
development team members, and since
the release of NBA SHOOTOUT 98, we’ve
added a couple of audio people (whom
we certainly could have used during
the development of NBA SHOOTOUT 98)
and we’re in the process of adding
some more. Upgrading existing titles
from previous releases and creating
new cutting-edge titles is an ongoing
job here at 989 Studios, and we’re con-
tinuing to make great games and to
push technology. ■

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

50

P O S T M O R T E M

AIF Typer
http://www.sonicfoundry.com/

products/utilities.html

SetItsType 1.3
http://home.highway.ne.jp/masa-u/

q5/hqx/setitstype-13-r2.hqx

ResEdit 2.1.3
ftp://ftp.info.apple.com/

Studio West
http://www.studiowest.com/

(619) 592-9497

The Surround Sound Mailing List
This is a good source for information on

binaural audio. Subscribe to

sursound@darkwing.uoregon.edu.

KBIG 104.3 in Los Angeles
Voice talent Mike Carlucci’s new home

as weekend DJ. Carlucci also can be

heard at the Anaheim Mighty Ducks’

hockey games.

FF OO RR FF UU RR TT HH EE RR II NN FF OO

Sound Forge 4.0d, Sonic Foundry’s waveform

editing program.

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

64

“6,753 unique skills!” “827 errand boy
missions!” and “A world so big you
won’t want to explore it all!” Give it a
rest. This is shallow. It’s silly. It betrays
our geeky roots in paper gaming (a
medium with only a dangerous, super-
ficial relation to electronic gaming).

Role-playing isn’t about statistics or
exploring randomly generated worlds of
crate-filled buildings. It isn’t about ran-
dom quests and combat encounters
every sixteen steps. It isn’t even about
+37 Swords of Instant Critical Hits that
do Double Damage From Behind! Role-
playing is about giving players the free-
dom to act as they see fit, within the
framework of a story we provide.

Role-playing is about characters
developing in unique and meaningful
ways as a result of player choices. It’s
about trying new behaviors in a safe set-
ting before we try them in the real
world. In the space I have here, I can’t
tell you how we make a game that
allows us to do all that. But let’s start by
identifying problems, and by looking at
character, setting, and story, and how
we usually approach them.

Character

M ost RPGs define characters by an
arbitrary “class” and/or a tire-

some list of statistics. Characters typical-
ly have 6-12 attributes (strength, intelli-
gence, and so on) and dozens of skills
tracked at a fine level of granularity
(lockpick score of 12, sharpshooter 72,
computer hacker 53). Secret die rolls
determine success or failure in skill use.
The problem with this is that two play-
ers can do exactly the same thing and
get different results because of insignifi-
cant differences between their charac-

ters. The difference between a 72 and a
73 shouldn’t have any impact on game
play. Does anyone think this is fun?

We have to come up with game
systems that tell players
what their characters
are capable of doing and
why they succeeded (or
failed). In a computer
game, we don’t need 42
skills tied to percentile
die rolls to simulate skill use.
We’re clever. We can come up
with something better. Leave the
dice and character sheets to
paper gamers.

RPGs often use characters’
abilities to bake bread, charm
NPCs, and so on. Yawn. Some
think hack-and-slash is a more
riveting way to use characters’
attributes. Ah, combat! It’s rela-
tively easy to simulate
and it gets
adrena-
line
pump-
ing. That’s
not enough.
Here’s a radical
concept: let players
control when and if
combat happens. Our
goal should be to make
combat an

option, but not always the best, and
never the only one. Encourage noncom-
bat interactions, especially conversation.

We can’t compromise conversation —
a terrific tool for differentiating charac-
ters — and still call a game an RPG. Here
are some ideas for improving conversa-
tions and game play:
• Conversations should reflect game

state. Nothing’s goofier than NPCs
who keep talking while

orcs hack them to bits.
Continued on page 63.

b y W a r r e n S p e c t o rS O A P B O X
It’s ROLE-Playing, Stupid!

T he oddest thing about computer role-play-

ing games today is that you never hear any-

one talk about the importance of playing a

role. You hear about “400 character classes!”

Warren Spector runs ION Storm’s Austin, Texas, office. He is currently working on a new role-playing game, DEUS EX. In the past,
he has produced games for Origin and LookingGlass Technologies. You can reach him at wspector@ionstorm.com.

Continued from page 64.

• Conversations should not involve lists
of keywords. They’re not fun, nor are
they revealing of character. They’re
filler. They reduce conversations to the
status of another stupid puzzle.

• Conversations should reveal things
about NPCs; your responses should
reveal things about you. The best way
to accomplish this is to make
“Yes/No” options the rule in conversa-
tional interaction with NPCs. Take, for
example, a situation in which you and
a friendly NPC face several enemies.
The friend says, “I’ll hold them off
while you escape and Do Important
Things…” Leave, and your friend is
doomed. Stay, and your mission may
come to an end. A Yes/No decision
becomes a dramatic moment that
reveals something about your friend
and about you. That’s very compelling
game play.
Conversations are made interesting

by the things they reveal about the
characters speaking, the game world,
and the world’s state — not the number
of branches in a conversation tree.

Setting

I ’ve worked on games in which it
takes hours to walk from one side of

town to the other. Many popular,
award-winning RPGs boast of hundreds
of generic towns and randomly generat-
ed quests. The shallow simulation of
huge environments isn’t a good thing.
Providing dialogue for scads of NPCs
means none of them has anything
interesting to say. Creating an entire
country means any single building will
be devoid of useful objects. It’s a matter
of time and storage space, and no
amount of whack-on-the-side-of-the-
head thinking allows you to finesse your
way around the problems. Limit the size
of your world. Provide several smaller
maps. Increase the density of interac-
tion. This accomplishes several goals:
• Players can explore without searching

for something exciting to do. Aimless
wandering is the enemy of fun.

• Developers can populate the world
more densely with characters, objects,
and quests, and give the illusion of a
place with a life of its own.

• Action can be tailored to player skill.
Difficulty can be increased easily as
players get deeper into the game.

• Developers can create more varied
locations than in a sprawling world.
This last point is critical, and most

RPGs do this well. However, most RPGs
feature wacky environments straight
out of designers’ fevered imaginations.
It’s not asking too much to think in
terms of believable, recognizable loca-
tions instead of arbitrary game spaces.
We should try to acknowledge the con-
ventions of the everyday, even when we
create fantasy worlds. In the real world,
you can tell you’re in a bedroom, as
opposed to a bathroom, the instant you
enter because of size, placement, and
furnishings. More game designers
should realize this.

Some games do hint at the possibili-
ties of believable environments, but
they don’t go far enough. In DUKE

NUKEM (a game I loved), the environ-
ment was a gimmick. You knew you
were in a movie theater, and you could
switch the projector on and watch a
bikini’ed babe do her thing — let’s talk
about sexism another time — but you
couldn’t switch on that projector and
blind a sniper before he fired. Imagine
if shooting a fire hydrant allowed you to
douse a fire. The ULTIMA games go fur-
ther, but not always in significant ways
(mea culpa!) — the key is not that every
plate and knife and fork be usable, or
that players reap wheat, grind it into
flour, and bake it into bread. The key is
recreating realistic locations and object
interactions that are exciting. Give play-
ers believable worlds with lots of usable
objects that produce predictable, useful
results. Let them blast barricades, freeze
enemies and then shatter them. Create
worlds where water damages paper and
gratings creak beneath players’ feet.

Every game problem should have
multiple solutions, by design or because
alternatives arise naturally out of the
simulation. How players deal with the
problems they encounter (whether they
choose violence over cleverness, talk
first and shoot later, and so on) should
affect subsequent interactions with the
denizens of the game world as well as
the substance of later missions.

Story

I s it just me, or does it seem like every
RPG drops players into a huge, all-

but-empty world and says, “Go. Hope
you find some fun.”? Man, have I been

guilty of that. After stumbling around
for a couple hours, players may even
find a clue that they’re supposed to Kill
the Evil Foozle. It’s almost as if there’s
some unspoken rule against offering
RPGers clear goals. The trick shouldn’t
be figuring out what you’re supposed to
do (which isn’t much fun); the trick
should be figuring out how to accom-
plish what you know you have to
accomplish. New goals can be revealed
as you go, but damn it, reveal those
goals! And make those goals more com-
pelling than “kill everything you see,”
okay? If working with Richard Garriott
taught me anything (and, believe me, it
did) it’s that an RPG can be more than
just a slugfest. More than any other
medium of expression, gaming lets peo-
ple find their own answers to tough
questions, rather than imposing an
artist’s vision of the world on them. It
doesn’t matter what issues we explore —
tolerance, morality, relationships, what-
ever — but let’s explore something.

Dungeon crawls are all well and good,
but we can allow players to explore who
they are and what they actually believe.
Unlike authors and filmmakers, we can
give people the opportunity to test
behaviors they’d never try in the real
world. I feel we have an obligation to do
that. If we provide only one answer
(usually violent) we do our medium and
our players a disservice.

Allow players to make choices and
then show the ramifications of those
choices: kill everything you see and suf-
fer the consequences; play the pacifist
and pay a different price. Games should
be rife with ethical dilemmas rather
than right and wrong choices. “What
are you fighting for?” and “How do you
achieve your goals?” should be unavoid-
able questions. When all is said and
done, story goals and tough questions
are just tools used to suck in players. If
we create small, deep, object-rich simu-
lations that allow multiple solutions to
tough problems, players will inevitably
stumble upon the “real” goal of an RPG
— to grow a unique alter ego.

Doing everything I’ve outlined
above won’t assure you a hit and acco-
lades from peers, press, and players. All
I know is we have to try. We have to
fail gloriously. If we keep settling for
RPGs that could have been made five
or ten years ago — and that describes
every RPG released in the last couple of
years — we’re doomed. ■

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 8 G A M E D E V E L O P E R

63

S O A P B O X

	back:

